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Abstract : Probabilistic finite automata (PFA) model stochastic languages, i.e.
probability distributions over strings. Inferring PFA from stochastic data is an
open field of research. We show that PFA are identifiable in the limit with prob-
ability one. Multiplicity automata (MA) are another device which can be used to
represent stochastic languages. We show that MA generate strictly more stochas-
tic languages than PFA, but we show also that it is undecidable whether an MA
generates a stochastic language. Moreover, stochastic languages generated from
MA cannot be described by a recursively enumerable subset of MA.

Topics: algorithmic learning theory, identification in the limit, grammatical inference,
stochastic languages, probabilistic automata, multiplicity automata.

1 Introduction

Probabilistic automata (PFA) are formal objects which modelstochastic languages, i.e.
probability distributions over words (1). They are composed of astructurewhich is a
finite automaton (NFA) and ofparametersassociated with states and transitions which
represent the probability for a state to be initial, terminal or the probability for a tran-
sition to be chosen. Given the structure of a probabilistic automatonA and a sequence
of wordsu1, . . . , un independently distributed according to a probability distribution
P , computing parameters forA which maximize the likelihood of the observation
is NP-hard (2). However in practical cases, algorithms based on EM (Expectation-
Maximization) method (3) can be used to compute approximate values. On the other
hand, inferring a probabilistic automaton (structure and parameters) from a sequence of
words is a widely open field of research. In some applications, prior knowledge may
help to choose a structure (for example, the standard model for biological sequence
analysis (4)). Without prior knowledge, a complete graph structure can be chosen. But
it is likely that in general, inferring both appropriate structure and parameters from data
would provide better results (see for example (5)).
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Several learning frameworks can be considered to study inference of PFA, which of-
ten consist in adaptations to the stochastic case of classical learning models. Here, we
consider a variant of the identification in the limit model of Gold (6), adapted to the
stochastic case in (7). Given a PFAA and a sequenceu1, . . . , un, . . . independently
drawn according to the associated distributionPA, an inference algorithm must com-
pute a PFAAn from each subsequenceu1, . . . , un such that with probability one, the
support ofAn is stationary from some indexn andPAn

converges toPA; moreover,
when parameters of the targetA are rational numbers, it can be requested thatAn itself
is stationary from some index. It has been shown that the set of deterministic proba-
bilistic automata (PDFA), i.e. PFA whose structure is deterministic, is identifiable in
the limit with probability one (8; 9; 10), the identification being exact when the param-
eters of the target are rational numbers. However, PDFA are far less expressive than
PFA, i.e. the set of probability distributions associated with deterministic probabilistic
automata is stricly included in the set of distributions generated from general proba-
bilistic automata. This result has been extended to the class of Probabilistic Residual
Finite Automata (PRFA), i.e. PFAA whose states generate a residual language ofPA

(11; 12).
Here, we show that the whole class of PFA is identifiable in the limit, the identification

being exact when the parameters of the target are rational numbers (Section 3).
Multiplicity automata(MA) are devices which model a setFMA of functions from

Σ∗ to R. It has been shown thatFMA is very efficiently learnable in a variant of the
exact learning model of Angluin, where the learner can askequivalenceandextended
membership queries(13; 14; 15). As PFA are particular MA, they are learnable in this
model. However, the learning is improper in the sense that the output function is not
a PFA but a multiplicity automaton. We show that the class of MA is maybe not a
very suitable representation scheme to represent stochastic languages if the goal is to
learn them from stochastic data. First, representation by MA is not robust, i.e. there are
MA which does not compute a stochastic language and which are arbitrarily close to a
given PFA. Second, we show that it is undecidable whether a MA generates a stochastic
language (this problem was left open in (1)). That is, given a MA computed from
stochastic data: it is possible that it does not compute a stochastic language and there
are maybe no ways to detect it! Finally, letSMA (Σ) be the set of stochastic languages
that can be computed from MA. We show that no recursively enumerable subset of
MA can generateSMA (Σ). As a corollary, MA can compute stochastic languages that
cannot be computable by PFA.

2 Preliminaries

2.1 Automata and Languages

Let Σ be a finitealphabet, andΣ∗ be the set of words onΣ. The empty word is
denoted byε and the length of a wordu is denoted by|u|. We denote by< the length-
lexicographic order onΣ∗. A languageis a subset ofΣ∗.

A non deterministic finite automaton (NFA)is a 5-tupleA = 〈Σ, Q,Q0, F, δ〉 where
Q is a finite set of states,Q0 ⊆ Q is the set of initial states,F ⊆ Q is the set of



terminal states,δ is the transition function defined fromQ × Σ to 2Q. Let δ also
denote the extension of the transition function defined from2Q ×Σ∗ to 2Q. An NFA is
deterministic (DFA)if Card (Q0) = 1 and if∀q ∈ Q, ∀x ∈ Σ, Card (δ(q, x)) ≤ 1. An
NFA is trimmedif for any stateq, q ∈ δ(Q0,Σ∗) andδ(q,Σ∗) ∩ F 6= ∅.

LetA = 〈Σ, Q,Q0, F, δ〉 be an NFA. A wordu ∈ Σ∗ is recognizedbyA if δ(Q0, u)∩
F 6= ∅. The language recognized byA isLA = {u ∈ Σ∗ | δ(Q0, u) ∩ F 6= ∅}.

2.2 Multiplicity Automata, Probabilistic Automata and Stochastic
Languages

A multiplicity automaton (MA)is a 5-tuple〈Σ, Q, ϕ, ι, τ〉 whereQ is a finite set of
states,ϕ : Q × Σ × Q → R is the transition function,ι : Q → R is the initialization
function andτ : Q→ R is the termination function. We extend the transition function
ϕ to Q × Σ∗ × Q by ϕ(q, wx, r) =

∑
s∈Q ϕ(q, w, s)ϕ(s, x, r) wherex ∈ Σ and

ϕ(q, ε, r) = 1 if q = r and0 otherwise. We extend againϕ to Q × 2Σ∗ × 2Q by
ϕ(q, U,R) =

∑
w∈U,r∈R ϕ(q, w, r). Let A = 〈Σ, Q, ϕ, ι, τ〉 be an MA. LetPA be

the function defined by:PA(u) =
∑

q,r∈Q ι(q)ϕ(q, u, r)τ(r). Thesupportof A is the
NFA 〈Σ, Q,QI , QT , δ〉 whereQI = {q ∈ Q | ι(q) 6= 0}, QT = {q ∈ Q | τ(q) 6= 0}
andδ(q, x) = {r ∈ Q | ϕ(q, x, r) 6= 0} for any stateq and any letterx. An MA is said
to betrimmedif its support is a trimmed NFA.

A semi Probabilistic Finite Automaton (semi-PFA)is an MA such thatι, ϕ and τ
take their values in[0, 1], such that

∑
q∈Q ι(q) ≤ 1 and for any stateq, τ(q) +

ϕ(q,Σ, Q) ≤ 1. A Probabilistic Finite Automaton (PFA)is a trimmed semi-PFA such
that

∑
q∈Q ι(q) = 1 and for any stateq, τ(q) + ϕ(q,Σ, Q) = 1. A Probabilistic

Deterministic Finite Automaton (PDFA)is a PFA whose support is deterministic.
A stochastic languageon Σ is a probability distribution overΣ∗, i.e. a function

P defined fromΣ∗ to [0, 1] such that
∑

u∈Σ∗ P (u) = 1. The functionPA associ-
ated with a PFAA (resp. a semi-PFAA) is a stochastic language (resp. satisfies∑

u∈Σ∗ PA(u) ≤ 1). Let us denote byS (Σ) the set of all stochastic languages on
Σ. Let P ∈ S (Σ) and letres(P ) = {u ∈ Σ∗|P (uΣ∗) 6= 0}. Let u ∈ res(P ), the
residual languageof P associated withu is the stochastic languageu−1P defined by
u−1P (w) = P (uw)/P (uΣ∗). Let Res (P ) = {u−1P |u ∈ res (P )}. It can be shown
thatRes (P ) spans a finite dimensional vector space iffP can be generated by an MA.
Let MAS be the set composed of MA which generate stochastic languages.

A Probabilistic Residual Finite Automaton (PRFA)is a PFAA = 〈Σ, Q, ϕ, ι, τ〉
whose states define residual languages ofPA, i.e. such that∀q ∈ Q, ∃u ∈ Σ∗, PA,q =
u−1PA, wherePA,q denotes the stochastic language generated by< Σ, Q, ϕ, ιq, τ >
whereιq(q) = 1 (12).

Let us denote bySMA (Σ) (resp. SPFA (Σ), SPRFA (Σ), SPDFA (Σ)) the set of
stochastic languages generated by MA (resp. PFA, PRFA, PDFA). It has been shown
thatSPDFA (Σ) ( SPRFA (Σ) ( SPFA (Σ) (11). We show in Section 4 thatSPFA (Σ) (
SMA (Σ).

Let R ⊆ MA. Let us denote byR[Q] the set of elements ofR, the parameters of
which are all inQ.
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2.3 Learning Stochastic languages

We are interested in learnable subsets ofMAS . Several learning model can be used to
study inference of stochastic languages. We consider two of them.

2.3.1 Identification in the limit with probability 1.

The identification in the limit learning model of Gold (6) can be adapted to the stochas-
tic case (7).

Let P ∈ S (Σ) and letS be a finite sample drawn according toP . For anyX ⊆ Σ∗,
let PS(X) = 1

Card(S)

∑
x∈S 1x∈X be the empirical distribution associated withS. A

complete presentationof P is an infinite sequenceS of words generated according toP .
We denote bySn the sequence composed of then first words (not necessarily different)
of S and we writePn(X) instead ofPSn

(X).

Definition 1
Let R ⊂ MAS . R is said to be identifiable in the limit with probability oneif there
exists a learning algorithm L such that for any R ∈ R, with probability 1, for any
complete presentation S of PR, L computes for each Sn given as input, a hypothe-
sis Rn ∈ R such that the support of Rn is stationary from some index n∗ and such
that PRn

→ PR as n → ∞. Moreover, R is strongly identifiable in the limit with
probability oneif PRn

is also stationary from some index.

Remark.
Unfortunately, this model is too weak as non polynomial time learning algorithms could
be used: LetL′ be an algorithm which on inputSn, runs then first steps ofL on
each sampleS1, . . . , Sn ; if no L(Si) terminates withinn steps,L′ outputs a default
hypothesis ; otherwise,L′ outputsRm wherem is the last index such thatL(Sm)
terminates withinn steps. See (16) for an extensive study.

It has been shown that the class of PDFA is identifiable in the limit with probability
one (8; 9) and that PDFA[Q] is strongly identifiable in the limit (10). It has been shown
that the class of PRFA is identifiable in the limit with probability one and that PRFA[Q]
is strongly identifiable in the limit (17).

We show in Section 3 that the class of PFA is identifiable in the limit with probability
one and that PFA[Q] is strongly identifiable in the limit.

2.3.2 Learning using queries

The MAT model of Angluin (18), which allows to usemembership queries(MQ) and
equivalence queries(EQ) has been extended to functions computed by MA. LetP be
the target function, letu be a word and letA be an MA. The answer to the query
MQ(u) is the valueP (u) ; the answer to the queryEQ(A) is YES if PA = P and
NO otherwise. Functions computed by MA can be learned exactly within polynomial
time provided that the learning algorithm can make extended membership queries and
equivalence queries. Therefore, any stochastic language that can be computed by an
MA can be learned by this algorithm.



However, using MA to represent stochastic languages involves some serious draw-
backs: first, this representation is not robust, i.e. an MA may compute a stochastic lan-
guage for a given set of parametersθ0 and computes a function which is not a stochastic
language for anyθ 6= θ0; moreover, we show in Section 4 that given an MA, it is unde-
cidable whether it computes a stochastic language. That is, by using MA to represent
stochastic languages, a learning algorithm relying on approximate data might infer an
MA which does not compute a stochastic language and with no means to detect it. We
also show thatMAS contains no recursively enumerable subset sufficient to generate
SMA (Σ).

3 Identifying SPFA (Σ) in the limit.

We show in this Section that the set of stochastic languages which can be generated
by PFA is identifiable in the limit with probability one. Moreover, the identification
is strong when the target can be generated by a PFA whose parameters are rational
numbers.

3.1 Weak identification

Let P be a stochastic language overΣ, letA = (Ai)i∈I be a family of subsets ofΣ∗,
let S be a finite sample drawn according toP , and letPS be the empirical distribution
associated withS. It can be shown (19; 20) that for any confidence parameterδ, with a
probability greater than1− δ, for anyi ∈ I,

|PS(Ai)− P (Ai)| ≤ c
√

VC(A)−log δ
4

Card(S) (1)

whereVC(A) is the dimension of Vapnik-Chervonenkis ofA and wherec is an univer-
sal constant.

WhenA = ({w})w∈Σ∗ , VC(A) = 1. Let Ψ(ε, δ) = c2

ε2 (1− log δ
4 ).

Lemma 1
Let P ∈ S(Σ∗) be a stochastic language and let S be a complete presentation of P .
For any precision parameter ε, any confidence parameter δ, any n ≥ Ψ(ε, δ), with a
probability greater than 1− δ, |Pn(w)− P (w)| ≤ ε for all w ∈ Σ∗.

Proof. Use Inequality (1). �

For any integerk, letQk = {1, . . . , k} and letΘk = {ιi, τi, ϕx
i,j |i, j ∈ Qk, x ∈ Σ}

be a set of variables. We consider the following set of constraintsCk onΘk:

Ck =


0 ≤ ιi, τi, ϕ

x
i,j ≤ 1 for anyi, j ∈ Qk, x ∈ Σ∑

i∈Qk
ιi ≤ 1

τi +
∑

j∈Qk,x∈Σ ϕ
x
i,j ≤ 1 for anyi ∈ Qk .

Any assignmentθ of these variables satisfyingCk is said to bevalid; any valid assigne-
mentθ defines a semi-PFAAθ

k by lettingι(i) = ιi, τ(i) = τi andϕ(i, x, j) = ϕx
i,j for
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any statesi andj and any letterx. We simple denote byPθ the functionPAθ
k

associated

with Aθ
k. Let Vk be the set of valid assignments. For anyθ ∈ Vk, let θt be the associ-

ated trimmed assignment which set to 0 every parameter which never contributes to the
probabilityPθ(w) of some wordw. Clearly,θt is valid andPθ = Pθt .

For any wordw, Pθ(w) can be seen as a function whose variables are elements of
Θk: Pθ(w) is a polynomial and is therefore continuous. Moreover, for any valid as-
signmentθ,

∑
w Pθ(w) ≤ 1. On the other hand, the series

∑
w Pθ(w) are convergent

but not uniformly convergent andPθ(wΣ∗) is not a continous function ofθ (see Fig. 1).
However, we show below that the function(θ, w) → Pθ(w) is uniformly continuous.

Aθt
0Aθα 1

2 a, 1

2

1

2

1

2 0
1

2 a, 1

2

1

2
a, 0α a, 1− α

0

Figure 1:Pθ0(ε) = Pθt
0
(ε) = 1/4 andPθ(ε) = 1/4 +α/2; Pθ0(Σ

∗) = Pθt
0
(Σ∗) = 1/2

andPθ(Σ∗) = 1 whenα > 0.

Proposition 1
For any integer k, the function (θ, w) → Pθ(w) is uniformly continuous, that is,

∀ε,∃α, ∀w ∈ Σ∗,∀θ, θ′ ∈ Vk, ||θ − θ′|| < α⇒ |Pθ(w)− Pθ′(w)| < ε .

Proof. We prove the proposition in several steps.

1. LetA = 〈Σ, Q, ϕ, ι, τ〉 be a semi-PFA. It can easily be shown by induction on
n that for any integern and any stateq ∈ Q, ϕ(q,Σn, Q) ≤ 1. Now, letw be
a word andq′ be state such thatϕ(q, w, q′) 6= 0 andτ(q′) 6= 0. Then, for any
integern > |w|, ϕ(q,Σn, Q) ≤ 1− ϕ(q, w, q′)τ(q′). Proof by induction on|w|:

• If w = ε, q = q′, τ(q) > 0 and

ϕ(q,Σn, Q) =
∑

q1∈Q

ϕ(q,Σ, q1)ϕ(q1,Σn−1, Q) ≤
∑

q1∈Q

ϕ(q,Σ, q1) ≤ 1−τ(q).

• In the general case,

ϕ(q,Σn, Q) =
∑

q1 6=q′

ϕ(q,Σ|w|, q1)ϕ(q1,Σn−|w|, Q)

+ ϕ(q,Σ|w|, q′)ϕ(q′,Σn−|w|, Q)

≤
∑

q1 6=q′

ϕ(q,Σ|w|, q1) + ϕ(q,Σ|w|, q′)(1− τ(q′))

≤
∑
q1

ϕ(q,Σ|w|, q1)− ϕ(q, w, q′)τ(q′)

≤ 1− ϕ(q, w, q′)τ(q′).



2. Letθ0 ∈ Vk, letAθt
0

k = 〈Σ, Qk, ϕ0, ι0, τ0〉 and letβ0 = Max{ϕ0(q,Σk, Qk)|q ∈
Qk}. As θt

0 is trimmed, for any stateq such thatϕ0(q,Σk, Qk) > 0, there exists
a wordv and a stateq′ such thatϕ0(q, v, q′) 6= 0 andτ0(q′) 6= 0. As any path in
A of length≥ k passes through the same states at least twice, there exists a word
w of length< k such thatϕ0(q, w, q′) 6= 0. Hence,ϕ(q,Σk, Q) < 1 andβ0 < 1.

3. For any integern and any stateq, ϕ0(q,Σnk, Qk) ≤ βn
0 . Easy proof by induction

onn.

4. For any integern, Pθ0(Σ
nkΣ∗) ≤

∑
q∈Qk

ι0(q)ϕ0(q,Σnk, Qk) ≤ βn
0 .

5. For any stateq,

ϕ0(q,Σ∗, Qk) =
∑

n∈N,0≤m<k

ϕ0(q,Σnk+m, Qk)

≤
∑

n∈N,0≤m<k,q′∈Qk

ϕ0(q,Σm, q′)ϕ0(q′,Σnk, Qk)

≤
∑

n∈N,0≤m<k,q′∈Qk

βn
0 ϕ0(q,Σm, q′) ≤ k/(1− β0).

6. Letα0 be the minimal non null parameter inθt
0, let α < α0/2, let θ be a valid

assignement such that||θ − θ0|| < α and letAθt

k = 〈Σ, Qk, ϕ, ι, τ〉. Note that
any non null parameter inθt

0 corresponds to a non null parameter inθt but that
the converse is false (see Fig. 1). Letθ′ be the assignment obtained fromθt

by setting to 0 every parameter which is null inθt
0, letAθ′

k = 〈Σ, Qk, ϕ
′, ι′, τ ′〉

and letβ′ = Max{ϕ′(q,Σk, Qk)|q ∈ Qk}. As θ′ andθt
0 have the same set of

non null parameters, there existsα1 < α0/2 such that||θ − θ0|| < α1 implies
β′ < (1 + β0)/2. Letβ1 = (1 + β0)/2.

7. Letw be a word of length≥ nk. There are two categories of derivations ofw in
Aθt

k :

• those which exist inAθ′

k . Their contribution toPθt(w) is not greater than
βn

1 .

• those which do not entirely exist inAθ′

k and one parameter of which is≤ α1.
Let q0, . . . , q|w| be such a derivation. Eitherι(q) ≤ α1, eitherτ(q|w|) ≤ α1,

or there exists a first stateqi such thatq0, . . . , qi is a derivation inAθ′

k and
ϕ(qi, wi, qi+1) ≤ α1, wherewi is theith letter ofw. The contribution of
these derivations toPθt(w) is bounded by∑

q,ι(q)≤α1

α1ϕ(q, w,Q) +
∑

q,q′,ι(q′)≤α1

ι(q)ϕ(q, w, q′)α1+

∑
q0,qi∈Qk

ι′(q0)ϕ′(q0,Σ∗, qi)α1 ≤ α1(k + 1 + k/(1− β1)).
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That is,
Pθt(w) ≤ βn

1 + α1(k + 1 + k/(1− β1)).

8. Letε > 0. Letα2 = Min(α1, ε/[4(k+ 1 + k/(1−β1))]) and letN be such that
βN

1 < ε/4. As for any fixedw, Pθ(w) is continuous, there existsα ≤ α2 such
that ||θ − θ0|| < α implies that for anyw ∈ Σ≤N , |Pθ0(w) − Pθ(w)| < ε. As,
Pθ0(w) ≤ ε/2 andPθ(w) ≤ ε/2 when|w| ≥ N , we conclude that for all words
w, |Pθ0(w)− Pθ(w)| < ε.

9. We have shown that

∀ε,∀θ0 ∈ Vk,∃α, ∀w ∈ Σ∗,∀θ ∈ Vk, ||θ − θ0|| < α⇒ |Pθ(w)− Pθ0(w)| < ε.

Now, suppose that

∃ε,∀n ∈ N,∃wn ∈ Σ∗,∃θn, θ
′
n ∈ Vk s.t. ,

||θn − θ′n|| < 1/n and|Pθn
(wn)− Pθ′

n
(wn)| ≥ ε.

As valid assignments are elements of a compact set, it would exist a valid as-
signementθ0 such thatθσ(n) → θ0 and θ′σ(n) → θ0 (for some subsequence
σ(n)). We know that there existsα > 0 such that||θ − θ0|| < α implies that
for all w, |Pθ0(w) − Pθ(w)| < ε/2. When1/n < α, the hypothesis leads to a
contradiction. �

Let P ∈ S(Σ∗) be a stochastic language and letS be a complete presentation ofP .
For any integersn andk and for anyε > 0, let IΘk

(Sn, ε) be the following system

IΘk
(Sn, ε) = Ck ∪ {|Pθ(w)− Pn(w)| ≤ ε for w ∈ Sn}.

Lemma 2
Let P ∈ S(Σ∗) be a stochastic language and let S be a complete presentation of P .
Suppose that there exists an integer k and a PFA Aθ0

k such that P = Pθ0 . Then, for
any precision parameter ε, any confidence parameter δ and any n ≥ Ψ(ε/2, δ), with a
probability greater than 1− δ, IΘk

(Sn, ε) has a solution that can be computed.

Proof. From Lemma 1, with a probability greater than1 − δ, we have|Pθ0(w) −
Pn(w)| ≤ ε/2 for all w ∈ Sn. For anyw ∈ Sn, Pθ(w) is a polynomial inθ whose
coefficients are all equal to 1. A boundMw of ||dPθ(w)

dθ || can easily be computed. We
have

|Pθ(w)− Pθ′(w)| ≤Mw||θ − θ′||.

Letα = inf{ ε
2Mw

|w ∈ Sn}. If ||θ− θ′|| < α, |Pθ(w)−Pθ′(w)| ≤ ε/2 for all w ∈ Sn.
So, we can compute a finite number of assignments:θα

1 , . . . θ
α
Nα

such that for all valid
assignmentθ, there exists1 ≤ i ≤ Nα such that||θ − θα

i || ≤ α. Let i be such that
||θ0 − θα

i || ≤ α: θα
i is a solution ofIΘk

(Sn, ε). �



The Borel-Cantelli Lemma is often used to show that a given property holds with
probability one: let(An)n∈N be a sequence of events such that

∑
n∈N P (An) < ∞;

then, the probability that a finite number ofAn occur is 1.
For any integern, let εn = n−

1
3 andδn = n−2. Clearly,εn → 0 and

∑
n∈N δn <∞.

Moreover, there exists an integerN such that∀n > N , n ≥ ψ (εn/2, δn).

Proposition 2
Let P be a stochastic language and let S be a complete presentation of P . Suppose
that there exists an integer k and a PFA Aθ0

k such that P = Pθ0 . With probability 1
there exists an integer N such that for any n > N , IΘk

(Sn, εn) has a solution θn and
limn→∞ Pθn

(w) → P (w) uniformly in w.

Proof. The Borel-Cantelli Lemma entails that with probability1 there exists an inte-
gerN such that for anyn > N , IΘk

(Sn, εn) has a solutionθn. Now suppose that

∃ε,∀N,∃n ≥ N,∃wn ∈ Σ∗, |Pθn
(wn)− P (wn)| ≥ ε.

Let (θσ(n)) be a subsequence of(θn) such that for every integern, σ(n) ≥ n, there
is |Pθσ(n)(wσ(n)) − P (wσ(n))| ≥ ε andθσ(n) → θ. As eachθσ(n) is a solution of
IΘk

(Sσ(n), εσ(n)), θ is a valid assignement such that for allw such thatP (w) 6= 0,
P (w) = Pθ(w). AsP is a stochastic language, we must haveP (w) = Pθ(w) for every
word w, i.e. P = Pθ. From Proposition 1,Pθσ(n) converges uniformy toP , which
contradicts the hypothesis.

It remains to show that when the target cannot be expressed by a PFA onk states, the
systemIΘk

(Sn, εn) has no solution from some index.

Proposition 3
Let P be a stochastic language and let S be a complete presentation of P . Let k be an
integer such that there exist no θ ∈ Vk satisfying P = Pθ. Then, with probability 1,
there exist an integer N such that for any n > N , IΘk

(Sn, εn) has no solution.

Proof.
Suppose that∀N ∈ N, ∃n ≥ N such thatIΘk

(Sn, εn) has a solution. Let(ni)i∈N
be an increasing sequence such thatIΘk

(Sni
, εni

) has a solutionθi and let(θki
) be a

subsequence of(θi) that converges to a limit valueθ.
Letw ∈ Σ∗ be such thatP (w) 6= 0. We have

|Pθ(w)− P (w)| ≤ |Pθ(w)− Pθi(w)|+ |Pθi(w)− Pni(w)|+ |Pni(w)− P (w)|

for any integeri.
With probability one, the last term converges to 0 asi tends to infinity (Lemma 1).

With probability one, there exists an indexi such thatw ∈ Sni
. From this index, the

second term is less thanεni which tends to 0 asi tends to infinity. Now, asPθ(w) is
a continuous function ofθ, the first term tends to 0 asi tends to infinity. Therefore,
Pθ(w) = P (w) andPθ = P , which contradicts the hypothesis.

�
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Theorem 1
SPFA (Σ) is identifiable in the limit with probability one.

Proof. Consider the following algorithmA:

Input : A stochastic sample Sn of length n.
for k = 1 to n do

compute α and θα
1 , . . . θα

Nα
as in Lemma 2

if ∃1 ≤ i ≤ Nα s.t. θα
i is a solution of IΘk

(Sn, εn) then

return the smallest solution (in some order) A
θα

i
k and exit

endif
endfor
return a default hypothesis; if none solution has been found

Output : A.

Let P be the target and letAθ0
k be a minimal state PFA which computesP . Previous

propositions prove that with probability one, from some indexN , the algorithm shall
output a PFAAθn

k such thatPθn converges uniformly toP . �

3.2 Strong identification

When the target can be computed by a PFA whose parameters are in
Q, an equivalent PFA can be identified in the limit with probability 1.

In order to show a similar property for PDFA, a method based on tree of Stern-Broco
was used in (10). Here we use the representation of real numbers by continuous frac-
tions (our main reference is (21)).

Let x be a non negative real number. Definex0 = x, a0 = bx0c and whilexn 6= an,
xn+1 = 1/(xn − an) andan+1 = bxnc. The sequences(xn) and(an) are finite iff
x ∈
Q.

Suppose from now on thatx ∈
Q, letN be the greatest index such thatxn 6= an, and for anyn ≤ N , let

pn/qn = a0 + 1/(a1 + 1/(. . . (an−1 + 1/an) . . .))

wheregcd(pn, qn) = 1. The fractionpn/qn is called thenth convergentof x.

Lemma 3
(21) We have x = pN

qN
and ∀n < N ,

∣∣∣x− pn

qn

∣∣∣ ≤ 1
qnqn+1

< 1
q2

n
. If a and b are two

integers such that
∣∣a

b − x
∣∣ < 1

2b2 , then there is an integer n ≤ N such that a
b = pn

qn
.

For any integer A, there exists only a finite number of rational numbers p
q such that∣∣∣x− p

q

∣∣∣ ≤ A
q2 .

Let x = 5/14. We havep0/q0 = 0, p1/q1 = 1/2, p2/q2 = 1/3 andp3/q3 = x.

Lemma 4
(17) Let (εn) be a sequence of non negative real numbers which converges to 0, let
x ∈ Q, let (yn) be a sequence of elements of Q such that |x − yn| ≤ εn for all but



finitely many n. Let pn
m

qn
m

the convergents associated with yn. Then, there exists an

integer N such that, for any n ≥ N , there is an integer m such that x = pn
m

qn
m

. Moreover,
pn

m

qn
m

is the unique rational number such that
∣∣∣yn − pn

m

qn
m

∣∣∣ ≤ εn ≤ 1
(qn

m)2 .

Example. Ifyn = 1
2 −

1
n andεn = 1

n , we havey3 = 1
6 , y4 = 1

4 , y5 = 3
10 , y6 = 1

3 ,

y7 = 5
14 . The first natural numbern for which

∣∣∣yn − pn
m

qn
m

∣∣∣ ≤ 1
n ≤ 1

(qn
m)2 has a solution

is n = 4. Let zn be the first solution. We havez4 = 1
4 , z5 = 1

3 , z6 = 1
3 andzn = 1

2
aftern = 7.

Theorem 2
SPFA (Σ) [Q] is strongly identifiable in the limit with probability one.

Proof.
Let θ be a valid assignment and letε > 0. Suppose that for every parameterα of θ,

there exists integerspα andqα such that|α − pα/qα| ≤ ε ≤ 1/q2α and suppose that
replacing eachα with pα/qα defines a valid assignment. Then, letfrac(θ, ε) be such an
assignment.

We slightly modify the algorithmA in computingfrac(θ, εn) for each assignmentθi

and in keeping a listL of all correct assignments computed during the previous steps.

Input : A stochastic sample Sn of length n, n−1 lists L1, . . . , Ln−1 of correct
rational assignments computed by the algorithm at previous steps.
Ln ← empty list
for k = 1 to n do

compute α and θα
1 , . . . θα

Nα
as in Lemma 2

for i = 1 to Nα do
if θ′ = frac(θα

i , εn) is a solution of IΘk
(Sn, εn) then

push( Ln, θ′)
endif

endfor
if Ln is not empty then

let p the smallest integer such that ∩n
i=pLi is not empty

let A be the first element of ∩n
i=pLi (in some order); exit

endif
A← A

θdef

k a default hypothesis;

Output : A and L.

Let θ0 be a rational assignment which computes the target. There is some stepn from
whereθ0 = frac(θα

i , εn) is inLn. Either the algorithm identifies a previous solution, or
it identifiesθ0. �

4 MAS is not a suitable class of representation for learn-
ing stochastic languages.

The representation of stochastic languages by MA is not robust. Fig. 2 shows two MA
which depend on parameterx. They define a stochastic language whenx = 0 but not
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a.
a, 1 + x

1

1

2

1

2

a,
1

2

1

a,−
1

2
− x

b.

1

2

−x

a, 1 + x

1 + x

a,
1

2

−x

Figure 2: Two MA generating stochastic language ifx = 0. If x > 0, the first generates
negative values and the second unbounded values.

whenx > 0. Whenx > 0, the first one generates negative values, and the second one
generates unbounded values.

Let P be a target stochastic language and letA be the MA generatingP which is
output by the exact learning algorithm defined in (14). A sampleS drawn according
to P defines an empiric distributionPS that could be used by some variants of this
learning algorithm. In the best case, this variant is expected to output a hypothesisÂ
having the same support asA and with approximated parameters close from those of
A. But there is no garanty that̂A defines a stochastic language. More serious, we show
below that it is undecidable whether a given MA generates a stochastic language. The
conclusion is that MA representation of stochastic languages is maybe not suitable to
learn stochastic languages.

4.1 Membership toMAS is undecidable

We show that the membership problem forMAS , which was left open in (1), is unde-
cidable. We use a reduction to a decision problem aboutacceptor PFA.

An MA 〈Σ, Q, ϕ, ι, τ〉 is anacceptor PFAif ϕ, ι andτ are non negative functions,∑
q∈Q ι(q) = 1, ∀q ∈ Q,∀x ∈ Σ,

∑
r∈Q ϕ(q, x, r) = 1 and if there exists a unique

terminal statet such thatτ(t) = 1.

Theorem 3
(22) Given an acceptor PFA A whose parameters are in Q and λ ∈ Q, it is undecidable
whether there exists a word w such that PA(w) < λ.

The following lemma shows some constructions on MA.

Lemma 5
Let A and B be two MA and let λ ∈ Q. We can construct:

1. an MA Iλ such that ∀w ∈ Σ∗, PIλ
(w) = λ,

2. an MA A+B such that PA+B = PA + PB ,



1.

b, 1
λ 1

a, 1

2.

A

B

3.

λ · ι(·)
A

λ · ι(·)

4. ϕ

n

ϕ

n

Aι

n

ι

n

τ

n

τ

n

τ

n ϕ

n

Figure 3: How to constructIλ,A+B, λ ·A andtr(A), wheren = |Σ|+ 1.

3. an MA λ ·A such that Pλ·A = λPA,

4. an MA tr(A) such that for any word w, Ptr(A)(w) = PA(w)

(|Σ|+1)|w|+1

Proof. Proofs are omitted. See Fig. 3.

Note that whenA is an acceptor PFA,tr(A) is a semi-PFA.

Lemma 6
Let A = 〈Σ, Q, ϕ, ι, τ〉 be a semi-PFA, let Qt be the set of states q ∈ Q such that
ϕ(QI ,Σ∗, q) > 0 and ϕ(q,Σ∗, QT ) > 0. Let At =

〈
Σ, Qt, ϕ|Qt

, ι|Qt
, τ|Qt

〉
. Then, At

is a trimmed semi-PFA such that PA = PAt and which can be constructed from A.

Proof. Straightforward.

Lemma 7
Let A be a trimmed semi-PFA, we can compute PA (Σ∗).

Proof. LetM be the square matrix[ϕ(q,Σ, r)](q,r)∈Q2 , T be the column vector
[τ(q)]q∈Q andX be the column vector[PA,q (Σ∗)]q∈Q. We haveX = T +MX.

Letk = Card(Qt). Remark thatMk =
[
ϕ(q,Σk, r)

]
(q,r)∈Q2 and that

∑
r∈Qt ϕ(q,Σk, r) =

ϕ(q,Σk, Q) < 1 (see Prop. 1, item 1 and 2), sinceA is trimmed. Therefore,
∑

k∈NM
k

is convergent,(I −M) is inversible andX = T (I −M)−1. Let J be the row vector
[ι(q)]q∈Q. We havePA (Σ∗) = JX. �

Proposition 4
It is undecidable whether an MA generates a stochastic language.

Proof. LetA be an acceptor PFA onΣ whose parameters are inQ andλ ∈ Q.
For every wordw, we have

Ptr(A−Iλ) (w) = (|Σ|+ 1)−(|w|+1) (PA(w)− λ) = Ptr(A)(w)− λ(|Σ|+ 1)−(|w|+1)

and thereforePtr(A−Iλ) (Σ∗) = Ptr(A) (Σ∗)− λ.

• If Ptr(A) (Σ∗) = λ then either∃w s.t. PA(w) < λ or ∀w,PA(w) = λ. Let
B be the PFA such thatPB(w) = 1 if w = ε and 0 otherwise. We have,
PB+tr(A−Iλ) (Σ∗) = 1. Therefore,

∀w,PA(w) ≥ λ iff PA(ε) ≥ λ andB+tr (A− Iλ) generates a stochastic language.
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• If Ptr(A) (Σ∗) 6= λ, let

B =
∣∣Ptr(A) (Σ∗)− λ

∣∣−1 · tr (A− Iλ) .

Check thatB is computable fromA, thatPB(Σ∗) = 1 and that

PB(w) =
∣∣Ptr(A) (Σ∗)− λ

∣∣−1
(
Card (Σ + 1)|w|+1

)−1

(PA(w)− λ) .

So,

∃w ∈ Σ∗, PA(w) < λ iff B does not generate a stochastic language.

In both cases, we see that deciding whether an MA generates a stochastic language
would solve the decision problem on PFA acceptors. �

Remark that in fact, we have proved a stronger result: it is undecidable whether a mul-
tiplicity automatonA ∈ MA[Q] such that

∑
w∈Σ∗ PA(w) = 1 generates a stochastic

langage.
This negative result is not sufficient yet to give up MA. It could be possible thatMAS

contains a recursively enumerable subset sufficient to generateSMA (Σ). We show in
next section that such a subset does not exist.

4.2 MAs which generate stochastic languages cannot be enumer-
ated

We show that the setMAS [Q] composed of multiplicity automata whose coefficients
are inQ and which generate stochastic languages is not recursively enumerable.

Theorem 4
MAS [Q] is not recursively enumerable.

Proof. The proof uses a technical result which can be found in the documenthttp:
//www.cmi.univ-mrs.fr/˜esposito/pub/cap04VL.pdf : given an MA
A with rational coefficients, it is decidable whether

∑
k PA(Σk) converges and if the

answer is yes, the sumPA(Σ∗) can be computed. This result generalizes Lemma 7.
Clearly,

A = {A ∈ MA[Q]|PA(Σ∗) = 1}

and
B = {A ∈ A|∃ w ∈ Σ∗PA(w) < 0}

can be enumerated. Therefore, asMAS [Q] = A \ B, if MAS [Q] was recursively
enumerable, thenMAS [Q] would be recursive, which is false. �

Corollary 1
MAS [Q] contains no recursively enumerable subset sufficient to generate SMA (Σ).



Proof. Given two MAA andB, it is possible to decide whetherPA = PB : it is shown
in (1) thatPA = PB iff PA(w) = PB(w) for all wordsw of length< |QA| + |QB |
whereQA andQB are the set of states ofA andB.

Suppose that there exists an enumerable subsetR of MAS [Q] sufficient to gener-
ateSMA (Σ). Then, we could enumerateR andMA[Q] in parallel and test whether
elements of the second set are equivalent to at least one lement of the first set. This
procedure yields an enumeration ofMAS [Q]. �

Corollary 2
SPFA (Σ) ( SMA (Σ).

Proof. Straightforward sincePFA[Q] is recursively enumerable. So,SMA (Σ) 6=
SPFA (Σ). �

5 Conclusion

We have shown that PFA are identifiable in the limit with probability one. However, our
learning algorithm is far from being efficient while algorithms that identifies PDFA or
PRFA in the limit can also be used in practical learning situations (ALERGIA, RLIPS
(8; 9), MDI (10)); work in progress for PRFA. We do not have model that describe
algorithms “that can be used in practical cases”: identification in the limit model is
clearly too weak, exact learning via queries is irrealistic, PAC-model is maybe too
strong (PDFA are not PAC-learnable (23)). Identifiability in the limit of PFA can be
interpreted as: there are no information-theoretic properties which forbid to look for
subclasses of PFA, as rich as possible and having good empirical learnability proper-
ties.

On the other hand, we have shown that representing stochastic languages by using
Multiplicity Automata presents some serious drawbacks. The subclass of stochastic
languages which has one of the simplest characterization (the residual languages must
span a finite dimensional vector space) yields to a very complicated subset of MA. We
feel that this representation scheme is not very suitable to represent stochastic languages
if the goal is to learn them from stochastic data.
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