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Abstract : Probabilistic finite automata (PFA) model stochastic languages, i.e.
probability distributions over strings. Inferring PFA from stochastic data is an
open field of research. We show that PFA are identifiable in the limit with prob-
ability one. Multiplicity automata (MA) are another device which can be used to
represent stochastic languages. We show that MA generate strictly more stochas-
tic languages than PFA, but we show also that it is undecidable whether an MA
generates a stochastic language. Moreover, stochastic languages generated from
MA cannot be described by a recursively enumerable subset of MA.

Topics: algorithmic learning theory, identification in the limit, grammatical inference,
stochastic languages, probabilistic automata, multiplicity automata.

1 Introduction

Probabilistic automata (PFA) are formal objects which matilthastic languagese.
probability distributions over words (1). They are composed siracturewhich is a

finite automaton (NFA) and gfarametersaassociated with states and transitions which
represent the probability for a state to be initial, terminal or the probability for a tran-
sition to be chosen. Given the structure of a probabilistic automatand a sequence

of wordsuy, ..., u, independently distributed according to a probability distribution

P, computing parameters fad which maximize the likelihood of the observation

is NP-hard (2). However in practical cases, algorithms based on Eddectation-
Maximizatior) method (3) can be used to compute approximate values. On the other
hand, inferring a probabilistic automaton (structure and parameters) from a sequence of
words is a widely open field of research. In some applications, prior knowledge may
help to choose a structure (for example, the standard model for biological sequence
analysis (4)). Without prior knowledge, a complete graph structure can be chosen. But
it is likely that in general, inferring both appropriate structure and parameters from data
would provide better results (see for example (5)).
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Several learning frameworks can be considered to study inference of PFA, which of-
ten consist in adaptations to the stochastic case of classical learning models. Here, we
consider a variant of the identification in the limit model of Gold (6), adapted to the
stochastic case in (7). Given a PFAand a sequence, ..., u,, ... independently
drawn according to the associated distributi®g, an inference algorithm must com-
pute a PFAA,, from each subsequenes, ..., u, such that with probability one, the
support of4,, is stationary from some index and P4, converges taP4; moreover,
when parameters of the targétare rational numbers, it can be requested thattself
is stationary from some index. It has been shown that the set of deterministic proba-
bilistic automata (PDFA), i.e. PFA whose structure is deterministic, is identifiable in
the limit with probability one (8; 9; 10), the identification being exact when the param-
eters of the target are rational numbers. However, PDFA are far less expressive than
PFA, i.e. the set of probability distributions associated with deterministic probabilistic
automata is stricly included in the set of distributions generated from general proba-
bilistic automata. This result has been extended to the class of Probabilistic Residual
Finite Automata (PRFA), i.e. PFA whose states generate a residual language,of
(11; 12).

Here, we show that the whole class of PFA is identifiable in the limit, the identification
being exact when the parameters of the target are rational numbers (Section 3).

Multiplicity automata(MA) are devices which model a sé&f;a of functions from
3* to R. It has been shown thafy, is very efficiently learnable in a variant of the
exact learning model of Angluin, where the learner canemgkivalenceandextended
membership queri€$3; 14; 15). As PFA are particular MA, they are learnable in this
model. However, the learning is improper in the sense that the output function is not
a PFA but a multiplicity automaton. We show that the class of MA is maybe not a
very suitable representation scheme to represent stochastic languages if the goal is to
learn them from stochastic data. First, representation by MA is not robust, i.e. there are
MA which does not compute a stochastic language and which are arbitrarily close to a
given PFA. Second, we show that it is undecidable whether a MA generates a stochastic
language (this problem was left open in (1)). That is, given a MA computed from
stochastic data: it is possible that it does not compute a stochastic language and there
are maybe no ways to detect it! Finally, 84 (3) be the set of stochastic languages
that can be computed from MA. We show that no recursively enumerable subset of
MA can generat&syia (X). As a corollary, MA can compute stochastic languages that
cannot be computable by PFA.

2 Preliminaries

2.1 Automata and Languages

Let X be a finitealphabet and ¥* be the set of words ox.. The empty word is
denoted by and the length of a word is denoted byu|. We denote by the length-
lexicographic order ox.*. A languageis a subset oE*.

A non deterministic finite automaton (NF&)a 5-tupled = (3, Q, Qo, F, d) where
Q is a finite set of stateg)y C (@ is the set of initial statesf” C (@ is the set of



terminal statesy is the transition function defined fromQ x ¥ to 29. Let § also
denote the extension of the transition function defined f26hx ©* to 29. An NFA is
deterministic (DFAJf Card (Qo) = 1 and ifVq € Q, Va € X, Card (6(q,x)) < 1. An
NFA is timmedif for any stateg, ¢ € 6(Qo, X*) andd(q, X*) N F # (.

LetA = (X, Q, Qo, F,0) be an NFA. Aword: € ¥* isrecognizedy A if §(Qo, u)N
F # @. The language recognized Byis L4 = {u € ¥* | §(Qo,u) N F # @}.

2.2 Multiplicity Automata, Probabilistic Automata and Stochastic
Languages

A multiplicity automaton (MA)s a 5-tuple(X, Q, ¢, ¢, 7) where@ is a finite set of
statesy : @ x X x @ — R is the transition function, : @ — R is the initialization
function andr : @ — R is the termination function. We extend the transition function
p1oQ x X x Qbyp(quwz,r) = 3 oe(ew,s)p(s,z,r) wherez € ¥ and
o(g,e,r) = 1if ¢ = r and0 otherwise. We extend agaipto Q x 2=  x 29 by
o, U,R) = X pevrer (@ w,r). Let A = (£,Q,p,.,7) be an MA. LetP4 be
the function defined byP4 (u) =, .o t(q)¥(q, u,r)7(r). Thesupportof A is the
NFA (£,Q, Qr,Qr.8) whereQ; = {q € Q | u(q) # 0}, Qr = {q € Q| 7(q) # 0}
andd(q,xz) = {r € Q | v(q,z,r) # 0} for any statey and any letter:. An MA is said

to betrimmedif its support is a trimmed NFA.

A semi Probabilistic Finite Automaton (semi-PF&)an MA such that, ¢ and
take their values ir0,1], such that}® _,:(q) < 1 and for any state;, 7(q) +
»(g,2,Q) < 1. A Probabilistic Finite Automaton (PFA} a trimmed semi-PFA such
thaty" o u(g) = 1 and for any state, 7(q) + ¢(¢,2,Q) = 1. A Probabilistic
Deterministic Finite Automaton (PDFA3 a PFA whose support is deterministic.

A stochastic languagen ¥ is a probability distribution ovelk*, i.e. a function
P defined from¥* to [0,1] such that) .. P(u) = 1. The functionP, associ-
ated with a PFAA (resp. a semi-PFA4) is a stochastic language (resp. satisfies
> uex- Pa(u) < 1). Let us denote bys () the set of all stochastic languages on
Y. LetP € S(X¥) and letres(P) = {u € ¥*|P(uX*) # 0}. Letu € res(P), the
residual languagef P associated with: is the stochastic language ! P defined by
u 1 P(w) = P(uw)/P(uX*). LetRes (P) = {u~!P|u € res (P)}. It can be shown
thatRes (P) spans a finite dimensional vector spacefiftan be generated by an MA.
Let MAs be the set composed of MA which generate stochastic languages.

A Probabilistic Residual Finite Automaton (PRF)a PFAA = (X,Q, ¢, ¢, T)
whose states define residual languageB gfi.e. such thatq € Q, Ju € £¥*, P4, =
u~' P4, whereP, , denotes the stochastic language generated B, Q, ¢, 1y, 7 >
wherei,(q) =1 (12).

Let us denote bySya (X) (resp. Spra (2), Sprra (2), Sppra (X)) the set of
stochastic languages generated by MA (resp. PFA, PRFA, PDFA). It has been shown
thatSpDFA (E) g SPRFA (Z) _g_ Spra (E) (11) We show in Section 4th8§3FA (Z) _g_
Sma ().

Let R C MA. Let us denote byR[Q] the set of elements aR, the parameters of
which are all inQ.



CAp 2004

2.3 Learning Stochastic languages

We are interested in learnable subset3idfs. Several learning model can be used to
study inference of stochastic languages. We consider two of them.

2.3.1 Identification in the limit with probability 1.

The identification in the limit learning model of Gold (6) can be adapted to the stochas-
tic case (7).

Let P € S (X) and letS be a finite sample drawn accordingfo For anyX C >*,
let Ps(X) = cararg) Lwes Leex be the empirical distribution associated with A
complete presentatiarf P is an infinite sequencg of words generated according kb
We denote bys,, the sequence composed of thérst words (not necessarily different)
of S and we writeP,, (X)) instead ofPs_(X).

Definition 1

Let R € MAs. R is said to be identifiable in the limit with probability onéf there
exists a learning algorithm L such that for any R € R, with probability 1, for any
complete presentation S of Pr, L computes for each S,, given as input, a hypothe-
sis R,, € R such that the support of R,, is stationary from some index n* and such
that Pr, — Pg asn — oo. Moreover, R is strongly identifiable in the limit with
probability oneif Pr, is also stationary from some index.

Remark.

Unfortunately, this model is too weak as non polynomial time learning algorithms could
be used: Letl’ be an algorithm which on inpu$,,, runs then first steps ofC on
each sampleSy, ..., S, ; if no £(S;) terminates withinn steps,£’ outputs a default
hypothesis ; otherwisef’ outputsR,, wherem is the last index such that(S,,)
terminates withim steps. See (16) for an extensive study.

It has been shown that the class of PDFA is identifiable in the limit with probability
one (8; 9) and that PDHA)] is strongly identifiable in the limit (10). It has been shown
that the class of PRFA is identifiable in the limit with probability one and that FRFA
is strongly identifiable in the limit (17).

We show in Section 3 that the class of PFA is identifiable in the limit with probability
one and that PFA)] is strongly identifiable in the limit.

2.3.2 Learning using queries

The MAT model of Angluin (18), which allows to useembership querie@Q) and
equivalence querieEQ) has been extended to functions computed by MA.R.&te

the target function, let: be a word and letd be an MA. The answer to the query
MQ(u) is the valueP(u) ; the answer to the quer¥Q(A) is YES if P, = P and

NO otherwise. Functions computed by MA can be learned exactly within polynomial
time provided that the learning algorithm can make extended membership queries and
equivalence queries. Therefore, any stochastic language that can be computed by an
MA can be learned by this algorithm.



However, using MA to represent stochastic languages involves some serious draw-
backs: first, this representation is not robust, i.e. an MA may compute a stochastic lan-
guage for a given set of parametégsand computes a function which is not a stochastic
language for any # 6,; moreover, we show in Section 4 that given an MA, it is unde-
cidable whether it computes a stochastic language. That is, by using MA to represent
stochastic languages, a learning algorithm relying on approximate data might infer an
MA which does not compute a stochastic language and with no means to detect it. We
also show thaM A s contains no recursively enumerable subset sufficient to generate

Sya (Z)

3 Identifying Spgra (%) in the limit.

We show in this Section that the set of stochastic languages which can be generated
by PFA is identifiable in the limit with probability one. Moreover, the identification

is strong when the target can be generated by a PFA whose parameters are rational
numbers.

3.1 Weak identification

Let P be a stochastic language overlet A = (A;);c; be a family of subsets df*,
let S be a finite sample drawn according® and letPs be the empirical distribution
associated witl$. It can be shown (19; 20) that for any confidence parameteith a
probability greater that — 4, for anyi € I,

VC(A)—log ¢
|Ps(A) — P(A)] < ¢ VoA oed @

whereVC(A) is the dimension of Vapnik-Chervonenkis.dfand where: is an univer-
sal constant. ,
WhenA = ({w})wes-, VC(A) = 1. Let¥(e,8) = S (1 —log 2).

Lemma 1l

Let P € S(X*) be a stochastic language and let S be a complete presentation of P.
For any precision parameter €, any confidence parameter 6, any n > WV (¢,4), with a
probability greater than 1 — §, |P,(w) — P(w)| < € for allw € ¥*.

Proof. Use Inequality (1). |

For any integek, letQy, = {1,...,k} and 1et®y, = {v;, 7,7 ;|i,j € Q, v € ¥}
be a set of variables. We consider the following set of constréiptsn ©;:

0<v,Ti, i, < 1foranyi,j € Qp,z €%
Crp = Zier 1 <1
T+ Zjer}IEZ i, < 1 foranyi € Qx

Any assignmend of these variables satisfying; is said to bevalid; any valid assigne-

mentd defines a semi-PFAL by letting (i) = v;, 7(i) = 7 andy(i, z, j) = oi ; for
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any states and; and any letter:. We simple denote by, the functionPAz associated

with AY. Let V; be the set of valid assignments. For @y V;, let ¢! be the associ-
ated trimmed assignment which set to 0 every parameter which never contributes to the
probability P, (w) of some wordw. Clearly,0! is valid andPy = Pp:.

For any wordw, Py(w) can be seen as a function whose variables are elements of
O Py(w) is a polynomial and is therefore continuous. Moreover, for any valid as-
signmentd, >, Py(w) < 1. On the other hand, the serigs  Py(w) are convergent

w

but not uniformly convergent anB, (wX*) is not a continous function @f (see Fig. 1).
However, we show below that the functiofy w) — Py(w) is uniformly continuous.

t
=Dt (DD et A% (0D @0 b ad

Figure 1: Py, (€) = Pyt (€) = 1/4andPy(e) = 1/4+ a/2; Py, (¥*) = Py (£*) = 1/2
andPy(¥X*) = 1 whena > 0.

Proposition 1
For any integer k, the function (6, w) — Pyp(w) is uniformly continuous, that is,

Ve, Ja, YVw € X*,V0,0" € Vi, ||0 — 0']| < a = |Po(w) — Py (w)| < e
Proof. We prove the proposition in several steps.

1. LetA = (,Q, v,t,7) be a semi-PFA. It can easily be shown by induction on
n that for any integern and any state € Q, (¢, X", Q) < 1. Now, letw be
a word andy’ be state such that(q, w,q¢’) # 0 and7(q’) # 0. Then, for any
integern > |w|, ¢(¢, X", Q) < 1 — ¢(q,w,q")T(q"). Proof by induction onw|:

e lfw=c¢e,q¢=¢, 7(q) >0and

(@2 Q)= > (0%, a)e(q, 2" Q) < > w(q, %, q1) < 1-7(q).
1 EQ 1EQ

e In the general case,

?(@.5.Q) = Y pla, =", a)p(ar, x" Q)

Qa#q
+ (g, 2" q")e(d, =M, Q)

<> (@2 q) + (e, 2", ¢) (1 - 7(¢))
@ #q

<> ela, =" q1) = (g, w, )7 (d)

<1—¢(qw,q)7(d).



. Letdy € Vi, let Ay = (S, Qy, w0, 10, 7o) and letdy = Maz{po(q, %, Q1)lq €

Qr}. As 6} is trimmed, for any state such thatpy (g, ¥, Q%) > 0, there exists

a wordv and a stat@’ such thatpg(q, v, q’) # 0 andry(¢’) # 0. As any path in

A of length> k passes through the same states at least twice, there exists a word
w of length< & such thatpy(q, w, ¢') # 0. Henceyp(q, 2%, Q) < 1 andg, < 1.

. For any integen and any state, »o(q, X%, Q1) < i Easy proof by induction
onn.

. For any integen, Py, (X"F%*) < > scon 10(q)po(q, 2", Qu) < 8.

. For any state,

900(% E*va) = Z @O(Q,Enk+vak)

nelN,0<m<k
< > 00(0,; 2™, ¢ )po(d', =™, Q)

neN,0<m<k,q’ €EQx

neN,0<m<k,q’ €Qx

. Letag be the minimal non null parameter 8, leta < ag/2, letd be a valid
assignement such thg# — || < o and letA? = (X, Qy, ¢, 1, 7). Note that
any non null parameter i6f, corresponds to a non null parameteminbut that
the converse is false (see Fig. 1). l#tbe the assignment obtained frath
by setting to O every parameter which is nulldfy let A? = (3, Qx, ', 0/, ')
and lets’ = Max{y'(¢,%%,Q1)lq € Qi}. As @ anddf have the same set of
non null parameters, there exists < «(/2 such that|d — 6y|| < aq implies

B < (1+ Bo)/2. Letpy = (1 + Bo)/2.

. Letw be a word of length> nk. There are two categories of derivationsuoin
A"

e those which exist in42,’. Their contribution toPy: (w) is not greater than
By

« those which do not entirely exist it! and one parameter of whichis .
Letqo, - - -, g be such aderivation. Eithefq) < a;, eitherr(g,,|) < a1,

or there exists a first statg such thaty, ..., ¢; is a derivation inAZ' and
w(gi, wi, gir1) < a1, Wherew; is theith letter ofw. The contribution of
these derivations t&y: (w) is bounded by

> aplgw, @+ Y da)elgw g )+

gt (g)<an q,9’,L(q") <o

S U (@0)¢ (a0, T a)ar < an(k+ 1+ k/(1— By)).

90,9: €Qxk
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That s,
Pyt (w) < B +ar(k+1+k/(1—pr)).

8. Lete > 0. Letas = Min(aq,¢/[4(k+1+k/(1—1))]) and letV be such that
BN < e/4. As for any fixedw, Py(w) is continuous, there exists < as such
that||0 — 6y|| < o implies that for anyw € <V, | Py, (w) — Py(w)| < €. As,
Py, (w) < €/2andPy(w) < ¢/2 when|w| > N, we conclude that for all words
w, | Py, (w) — Pyp(w)| < e.

9. We have shown that
Ve, V0o € Vi, Ja, Yw € V0 € Vi, |10 — Op|| < a = |Py(w) — Py, (w)| < e.

Now, suppose that

Je,¥n € N, Jw, € £*,30,, 0, € Vi, sit.,
10, — 0,,]| < 1/n and|Py, (w,) — Py, (w,)| > €.

As valid assignments are elements of a compact set, it would exist a valid as-
signementd, such thatd,,, — 6 and 0{7(”) — 6y (for some subsequence
o(n)). We know that there exists > 0 such that|0 — 6y|| < « implies that

for all w, |Py,(w) — Py(w)| < €/2. Whenl/n < «, the hypothesis leads to a
contradiction. O

Let P € S(X*) be a stochastic language and $ebe a complete presentation Bf
For any integers andk and for anye > 0, let Ig, (S, €) be the following system

Io, (Sn,€) = Cr U{|Py(w) — Pp(w)| < eforw € S, }.

Lemma 2

Let P € S(X*) be a stochastic language and let S be a complete presentation of P.
Suppose that there exists an integer k and a PFA AZQ such that P = Py,. Then, for
any precision parameter €, any confidence parameter § and any n > V¥ (¢/2,6), with a
probability greater than 1 — 0, I, (S, €) has a solution that can be computed.

Proof. From Lemma 1, with a probability greater thhr- ¢, we have|Py, (w) —
P,(w)| < ¢/2forallw € S,. Foranyw € S, Ps(w) is a polynomial ind whose
coefficients are all equal to 1. A bourd,, of ||dP27é“’)\| can easily be computed. We
have

| Po(w) — Py (w)| < My||6 —6"|].

Leta = inf{5;7—|w € S, }. If |0 — 0[] <, [Pp(w) — Ppr(w)| < e/2forallw € S,,.
So, we can compute a finite number of assignmetits: .. 6%, such that for all valid
assignmend, there existd < ¢ < N, such that|d — 6%|| < a. Leti be such that

[160 — 0] < a: 6% is a solution oflg, (S, €). O



The Borel-Cantelli Lemma is often used to show that a given property holds with
probability one: let(A, ).~ be a sequence of events such that . P(A,) < oo;
then, the probability that a finite number 4f, occur is 1.

For any integen, lete,, = n=s ands,, = n~2. Clearly,e, — 0 andzne]N Op < 00.
Moreover, there exists an integdtsuch that'n > N, n > ¢ (e,/2, 6,).

Proposition 2

Let P be a stochastic language and let S be a complete presentation of P. Suppose
that there exists an integer k and a PFA AZ" such that P = Py,. With probability 1
there exists an integer N such that for any n > N, Ig, (Sy, €,) has a solution 6,, and
lim,, 0 Py, (w) — P(w) uniformly in w.

Proof. The Borel-Cantelli Lemma entails that with probabilitthere exists an inte-
ger N such that for any. > N, Ig, (Sy, €,) has a solutiod,,. Now suppose that

Jde, VN, 3In > N, Jw,, € X%, | Py, (wy) — P(wy)| > €.

Let (6,(»)) be a subsequence (f,,) such that for every integer, o(n) > n, there
is [Py, ., (Wo(n)) = P(wsm))| > € andb, ) — 6. As eachd,, is a solution of
I, (Ss(n)s €a(n)), 0 is @ valid assignement such that for allsuch thatP(w) # 0,
P(w) = Py(w). As P is a stochastic language, we must h&(ev) = Py(w) for every
word w, i.e. P = P,. From Proposition 1P90<n> converges uniformy td?, which
contradicts the hypothesis.

It remains to show that when the target cannot be expressed by a PFstates, the
systemlg, (S, €,) has no solution from some index.

Proposition 3

Let P be a stochastic language and let S be a complete presentation of P. Let k be an
integer such that there exist no § € Vj, satistying P = P,. Then, with probability 1,
there exist an integer N such that for any n > N, Ig, (Sy, €,,) has no solution.

Proof.

Suppose that N € N, 3n > N such thatlg, (S,, €,,) has a solution. Letn;);ecw
be an increasing sequence such that(S,,,, €,,) has a solutiord; and let(d,) be a
subsequence @f;) that converges to a limit value

Letw € ¥* be such thaP(w) # 0. We have

|P(w) = P(w)| < [Pg(w) = P, (w)] + |Po, (w) = P, (w)] + | Po; (w) = P(w)]

for any integet.

With probability one, the last term converges to Oidends to infinity (Lemma 1).
With probability one, there exists an indésuch thatw € S,,,. From this index, the
second term is less than, which tends to 0 as tends to infinity. Now, ady(w) is
a continuous function of, the first term tends to O astends to infinity. Therefore,
Py(w) = P(w) and P; = P, which contradicts the hypothesis.

O
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Theorem 1
Spra (X) is identifiable in the limit with probability one.

Proof. Consider the following algorithmd:

Input : A stochastic sample Sy of length n.
for k=1t n do
compute « and 9?""9%(1 as in Lemma 2

if 31 <i< Ny st 0% is a solution of Io, (Sn,e€n) then
return the smallest solution (in some order) AZ? and exit
endif
endfor
return a default hypothesis; if none solution has been found
Output : A

Let P be the target and Iealzo be a minimal state PFA which comput®s Previous
propositions prove that with probability one, from some indéxthe algorithm shall
output a PFAAz" such thatPy,, converges uniformly ta. |

3.2 Strong identification

When the target can be computed by a PFA whose parameters are in
Q, an equivalent PFA can be identified in the limit with probability 1.

In order to show a similar property for PDFA, a method based on tree of Stern-Broco
was used in (10). Here we use the representation of real numbers by continuous frac-
tions (our main reference is (21)).

Let 2 be a non negative real number. Define= z, ag = | o] and whilex,, # a,,

ZTnt1 = 1/(zy — ayn) @anda,41 = |2, ]. The sequence&:,,) and(a,,) are finite iff
S
Q.

Suppose from now on thate

Q, let N be the greatest index such that # a,,, and for anyn < N, let

Pr/qn =a0+1/(a1 +1/(... (an-1 +1/ay)...))
whereged(pn, ) = 1. The fractionp,, /¢, is called thenth convergenof z.

Lemma 3

(21) We have © = X andVn < N, ’:1: bl < L« L Jfqgandb are two
anN dn dndn+1 q n

integers such that ‘ z } b2’ then there is an integer n < N such that 4 = ’q)",

For any integer A, there exists only a finite number of rational numbers p such that

< A

q| — ¢

Letx = 5/14. We havepy/qo = 0, p1/q1 = 1/2, p2/g2 = 1/3 andps /g3 = x.

Lemma 4
(17) Let (e,,) be a sequence of non negative real numbers which converges to 0, let
xz € Q, let (y,) be a sequence of elements of Q such that |x — y,| < €, for all but



finitely many n. Let g% the convergents associated with vy,,. Then, there exists an

integer N such that, for any n > N, there is an integer m such that x = z Zl . Moreover,

m

<eép <

T .

N

1
(ap,

Yy — Lm
n qn

m

% is the unique rational number such that

=
I

1 _ 3 _ 1
Zyy5_ﬁly6_§1

1 < _L_ has a solution
n (ap,

Example. Ify, = 3 — 1 ande, = 1, we havey; = %,y

.
p
Yn — 2| <

isn = 4. Let z, be the first solution. We have, = 1, 25 = 1, 26 = § andz, = %
aftern = 7.

Y7 = 15—4. The first natural numbet for which

Theorem 2
Spra (2) [Q] is strongly identifiable in the limit with probability one.

Proof.

Let 6 be a valid assignment and let> 0. Suppose that for every parameteof 0,
there exists integers, andg, such thaa — p,/q.| < € < 1/¢2 and suppose that
replacing eacl with p, /q. defines a valid assignment. Then,fletc(6, €) be such an
assignment.

We slightly modify the algorithmA in computingfrac(6, €,,) for each assignme
and in keeping a lisL. of all correct assignments computed during the previous steps.

Input : A stochastic sample Sn of length n, n—1 lists Li,...,Ly,—1 of correct
rational assignments computed by the algorithm at previous steps.
L, «— empty list
for k=1to n do
compute « and 6f,...6% as in Lemma 2
for i=11to N, do

if ¢ =frac(6$,e,) is a solution of Ie, (Sn,€n) then
push( Ly, 0")

endif
endfor
if L, is not empty then

let p the smallest integer such that N ,L; is not empty

let A be the first element of N, Li (in some order); exit
endif

A— Azdef a default hypothesis;
Output : A and L.

Let 6y be arational assignment which computes the target. There is somefsoep
wherefy = frac(6¢, €,) is in L,,. Either the algorithm identifies a previous solution, or
it identifiesd,. ([

4 MAgis notasuitable class of representation for learn-
ing stochastic languages.

The representation of stochastic languages by MA is not robust. Fig. 2 shows two MA
which depend on parameter They define a stochastic language whes: 0 but not
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Figure 2: Two MA generating stochastic language i 0. If z > 0, the first generates
negative values and the second unbounded values.

N =

whenz > 0. Whenz > 0, the first one generates negative values, and the second one
generates unbounded values.

Let P be a target stochastic language andAebe the MA generating® which is
output by the exact learning algorithm defined in (14). A santpdrawn according
to P defines an empiric distributio®s that could be used by some variants of this
learning algorithm. In the best case, this variant is expected to output a hypathesis
having the same support asand with approximated parameters close from those of
A. But there is no garanty that defines a stochastic language. More serious, we show
below that it is undecidable whether a given MA generates a stochastic language. The
conclusion is that MA representation of stochastic languages is maybe not suitable to
learn stochastic languages.

4.1 Membership toMA; is undecidable

We show that the membership problem fard s, which was left open in (1), is unde-
cidable. We use a reduction to a decision problem aboc¢ptor PFA

An MA (¥,Q, ¢, ¢, 7) is anacceptor PFAf ¢, « andT are non negative functions,
dgeqtle) =1, Vg € QVa € X, (g, z,7) = 1 and if there exists a unique
terminal state such thatr(¢) = 1.

Theorem 3
(22) Given an acceptor PFA A whose parameters are in Q and \ € Q, it is undecidable
whether there exists a word w such that Py (w) < A.

The following lemma shows some constructions on MA.

Lemma5
Let A and B be two MA and let A € Q. We can construct:

1. an MA I such thatVw € ¥*, Pr, (w) = A,
2. an MA A + B such that Py = P4 + Pp,
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Figure 3: How to construdty, A + B, A\ - A andtr(A), wheren = |X| + 1.

4,

3. an MA X - A such that Py.4 = APy,

4. an MA tr(A) such that for any word w, Py, (4)(w) = %

Proof. Proofs are omitted. See Fig. 3.

Note that whem is an acceptor PFAr(A) is a semi-PFA.

Lemma 6

Let A = (%,Q,,t,7) be a semi-PFA, let Q* be the set of states ¢ € Q such that
©(Qr,X*,q) > 0and p(q,X*,Qr) > 0. Let A' = (,Q", ¢1q,, 4|0, T|q, )- Then, A!
is a trimmed semi-PFA such that Py = P4+ and which can be constructed from A.

Proof. Straightforward.

Lemma 7
Let A be a trimmed semi-PFA, we can compute Py (¥*).

Proof. Let)M be the square matriko(g, 3, )], ,ycqe. ' be the column vector
[7(¢)] e @and X be the column vectd’s ¢ (X*)] .- We haveX =T+ M X.

Letk = Card(Q"). Remarkthaf/* = [¢(q, X%, 7)] (g andthabs . o(q, YFr) =
©(q,%*,Q) < 1 (see Prop. 1, item 1 and 2), sindds trimmed. Thereforey, _ M*

is convergent(I — M) is inversible andX = T (I — M)~". Let.J be the row vector
[1(@)] e - We haveP, (X7) = JX. O

Proposition 4
It is undecidable whether an MA generates a stochastic language.

Proof. LetA be an acceptor PFA ai whose parameters are@and) € Q.
For every wordw, we have

Pya—1,) (w) = (|13 + 1)~ (Py (w) — X) = Pyyay(w) — A(|B] + 1)~ I+
and therefore..(4_r,) (%) = Pira) () — A

o If P4y (X¥) = Athen eitherJw s.t. Py(w) < A or Vw, Py(w) = A. Let
B be the PFA such thaPs(w) = 1 if w = € and 0 otherwise. We have,
Ppiuca—r,) (X*) = 1. Therefore,

Vw, Pa(w) > Aiff Pa(e) > A andB+tr (A — I,,) generates a stochastic language
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o If Ptr(A) (Z*) 7é A, let
% -1
B=|Pya (S) = A -tr(A-1).

Check thatB is computable fromy, that Pz(X*) = 1 and that
_ -1
Po(w) = [Puy (29 =M (Card (54 )7) 7 (Pa) = 4.

So,

Jw € ¥*, Pa(w) < Xiff B does not generate a stochastic language.

In both cases, we see that deciding whether an MA generates a stochastic language
would solve the decision problem on PFA acceptors. O

Remark that in fact, we have proved a stronger result: it is undecidable whether a mul-
tiplicity automatonA € M A[Q] such thaty | ... Pa(w) = 1 generates a stochastic
langage.

This negative result is not sufficient yet to give up MA. It could be possiblelthiag
contains a recursively enumerable subset sufficient to gen8yate>). We show in
next section that such a subset does not exist.

4.2 MAs which generate stochastic languages cannot be enumer-
ated

We show that the sétlA s[Q] composed of multiplicity automata whose coefficients
are inQ and which generate stochastic languages is not recursively enumerable.

Theorem 4
M As[Q] is not recursively enumerable.

Proof. The proof uses a technical result which can be found in the docuntipnt
Ilwww.cmi.univ-mrs.fr/"esposito/pub/cap04VL.pdf : given an MA
A with rational coefficients, it is decidable whethel, P(X*) converges and if the
answer is yes, the suiy (X*) can be computed. This result generalizes Lemma 7.
Clearly,
A ={A e MA[Q][Ps(X7) =1}

and
B={Ac AlJwe X" Py(w) < 0}

can be enumerated. Therefore, Ma\s[Q] = A\ B, if MAs[Q] was recursively
enumerable, theN A 5[Q] would be recursive, which is false. O

Corollary 1
MAs[Q] contains no recursively enumerable subset sufficient to generate Syia (X).



Proof. Given two MAA andB, it is possible to decide whethély = Pg: itis shown
in (1) thatP4 = Pg iff P4(w) = Pg(w) for all wordsw of length< |Q 4| + |@ 5|
where@ 4 andQ@ g are the set of states df and B.

Suppose that there exists an enumerable suBseft M As[Q] sufficient to gener-
ateSuva (X). Then, we could enumeraf@ and MA[Q] in parallel and test whether
elements of the second set are equivalent to at least one lement of the first set. This
procedure yields an enumerationMfA s [Q)]. O

Corollary 2
Spra (2) € Sma (2).

Proof. Straightforward sinc&F' A[Q] is recursively enumerable. S&ya (X) #
Spra (). O

5 Conclusion

We have shown that PFA are identifiable in the limit with probability one. However, our
learning algorithm is far from being efficient while algorithms that identifies PDFA or
PRFA in the limit can also be used in practical learning situations (ALERGIA, RLIPS
(8; 9), MDI (10)); work in progress for PRFA. We do not have model that describe
algorithms “that can be used in practical cases”: identification in the limit model is
clearly too weak, exact learning via queries is irrealistic, PAC-model is maybe too
strong (PDFA are not PAC-learnable (23)). Identifiability in the limit of PFA can be
interpreted as: there are no information-theoretic properties which forbid to look for
subclasses of PFA, as rich as possible and having good empirical learnability proper-
ties.

On the other hand, we have shown that representing stochastic languages by using
Multiplicity Automata presents some serious drawbacks. The subclass of stochastic
languages which has one of the simplest characterization (the residual languages must
span a finite dimensional vector space) yields to a very complicated subset of MA. We
feel that this representation scheme is not very suitable to represent stochastic languages
if the goal is to learn them from stochastic data.
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