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Abstract. Given afiniteset of wordsws, . .., w, independently drawn according
to afixed unknown distribution law P called a stochastic language, an usua goal
in Grammatical Inferenceistoinfer an estimate of P in some class of probabilistic
models, such as Probabilistic Automata (PA). Here, we study the class S (X))
of rational stochastic languages, which consists in stochastic languages that can
be generated by Multiplicity Automata (MA) and which strictly includes the class
of stochastic languages generated by PA. Rational stochastic languages have min-
imal normal representation which may be very concise, and whose parameters
can be efficiently estimated from stochastic samples. We design an efficient infer-
ence agorithm DEES which aims at building a minimal normal representation of
the target. Despite the fact that no recursively enumerable class of MA computes
exactly Sg**(X), we show that DEES strongly identifies S5**(X) in the limit.
We study the intermediary MA output by DEES and show that they compute ra-
tional series which converge absolutely to one and which can be used to provide
stochastic languages which closely estimate the target.

1 Introduction

In probabilistic grammatical inference, it is supposed that data arise in the form of afi-
nite set of wordswy, . . . , w,,, built on apredefinitealphabet X, and independently drawn
according to afixed unknown distribution law on X * called a stochastic language. Then,
an usual goal istotry toinfer an estimate of thisdistribution law in some class of proba-
bilistic models, such as Probabilistic Automata (PA), which have the same expressivity
as Hidden Markov Models (HMM). PA areidentifiablein the limit [6]. However, to our
knowledge, there exists no efficient inference algorithm able to deal with thewhole class
of stochastic languages that can be generated from PA. Most of the previous works use
restricted subclasses of PA such as Probabilistic Deterministic Automata (PDA) [5,12].
In the other hand, Probabilistic Automata are particular cases of Multiplicity Automata,
and stochastic languages which can be generated by multiplicity automata are special

cases of rational languages that we call rational stochastic languages. MA have been
used in grammatical inferencein avariant of the exact learning model of Angluin[3,1,2]

but not in probabilistic grammatical inference. Let usdesign by S 7#¢(X), the class of ra-
tional stochastic languages over the semiring K. When K = Q* or K = R*, §;44(X)
is exactly the class of stochastic languages generated by PA with parametersin K. But,
when K = Q or K = R, we obtain strictly greater classes which provide severa advan-
tages and at |east one drawback: elements of S74f (%) may have significantly smaller
representation in Sy#*(X') which is clearly an advantage from a learning perspective;
elements of S74*(X) have a minimal normal representation while such normal repre-
sentations do not exist for PA; parameters of these minimal representations are directly



related to probabilities of some natural events of the form X' *, which can be efficiently
estimated from stochastic samples; lastly, when K isafield, rational seriesover K form
a vector space and efficient linear agebra techniques can be used to deal with rational
stochastic languages. However, the class S () presentsaserious drawback : there ex-
ists no recursively enumerable subset of MA which exactly generatesit [6]. Moreover,
this class of representations is unstable: arbitrarily close to an MA which generates a
stochastic language, we may find MA whose associated rational series r takes negative
values and is not absolutely convergent: the global weight ) .. 7(w) may be un-
bounded or not (absolutely) defined. However, we show that S 6‘“ (X)) isstrongly identi-
fiable in the limit: we design an algorithm DEES such that, for any target P € S@“t(z)
and given access to an infinite sample S drawn according to P, will convergein afinite
but unbounded number of steps to a minimal normal representation of P. Moreover,
DEESisefficient: it runswithin polynomial timein the size of the input and it computes
a minimal number of parameters with classical statistical rates of convergence. How-
ever, before converging to the target, DEES output MA which are close to the target
but which do not compute stochastic languages. The question is: what kind of guar-
antees do we have on these intermediary hypotheses and how can we use them for a
probabilistic inference purpose? We show that, since the algorithm aims at building a
minimal normal representation of the target, the intermediary hypotheses » output by
DEES have anice property: they absolutely convergeto 1,i.e.7= 3 . |r(w)| < oo
and Y, ., 7(Z*) = 1. As aconsequence, r(X) is defined without ambiguity for any
X C X* andit can be shown that N, = >, |r(u)| tends to O as the learning
proceeds. Given any such series r, we can efficiently compute a stochastic language p .,
which is not rational, but has the property that e V+/™ < p,.(u)/r(u) < 1 for any word u
such that 7(u > 0). Our conclusion is that, despite the fact that no recursively enumer-
able class of MA represents the class of rational stochastic languages, MA can be used
efficiently to infer such stochastic languages.

Classical notions on stochastic languages, rational series, and multiplicity automata
are recalled in Section 2. We study an example which shows that the representation
of rational stochastic languages by MA with real parameters may be very concise. We
introduce our inference algorithm DEES in Section 3 and we show that S (X)) is
strongly indentifiable in the limit. We study the properties of the MA output by DEES
in Section 4 and we show that they define absolutely convergent rational series which
can be used to compute stochastic languages which are estimates of the target.

2 Preiminaries

Formal power series and stochastic languages. Let X'* be the set of words on the finite
alphabet X, The empty word is denoted by ¢ and the length of aword « is denoted by
|u|. For any integer k, let X% = {u € X¥*: |u| = k}and XF = {u € % : |u| < k}.
We denote by < the length-lexicographic order on X *. A subset P of X* is prefixial if
forany u,v € X*,uwv € P=u € P.Forany S C X* letpref(S) ={ue X*:Jv e
X* uv € Stand fact(S) = {v e X*: Ju,w € T* uwvw € S}.

Let X be afinite alphabet and K asemiring. A formal power seriesisamapping r
of X* into K. In this paper, we always suppose that K € {R,Q,R™, Q" }. The set of
all formal power seriesis denoted by K ((X)). Let us denote by supp(r) the support of
r,i.e theset {w € X* : r(w) # 0}.



A stochastic languageis aformal seriesp which takesitsvaluesin R * and such that
> wes~P(w) = 1. For any language L C X*, let usdenote > -, p(w) by p(L). The
set of al stochastic languages over X is denoted by S(X). For any stochastic language
p and any word u such that p(uX*) # 0, we define the stochastic language v~ !p by

up(w) = % u~!'piscalled the residual language of p wrt . Let us denote by
res(p) theset {u € X* : p(uX*) # 0} and by Res(p) theset {u=1p : u € res(p)}.
We call sample any finite sequence of words. Let S be a sample. We denote by Pg
the empirical distribution on X* associated with S. A complete presentation of P isan
infinite sequence S of words independently drawn according to P. We denote by S,
the sequence composed of the n first words of S. We shall make a frequent use of the
Borel-Cantelli Lemma which states that if (Ax)ren is @ sequence of events such that

> ren Pr(Ax) < oo, then the probability that a finite number of A; occursis 1.

Automata. Let K be asemiring. A K-multiplicity automaton (MA) is a 5-tuple (¥, @,
v, 1, 7) where @ isafinite set of states, ¢ : Q x X' x Q — K isthetransition function,
t: Q — K istheinitidization functionand 7 : @ — K isthe termination function.
Let Qr = {q € Q|u(q) # 0} bethe set of initial statesand Q1 = {q € Q|r(q) # 0}
be the set of terminal states. The support of an MA A = (¥, Q, p, ¢, 7) is the NFA
Supp(A) = <27 Qa QI; QT? 5> where 5((17 JJ) = {q/ € Q|<P(q, Z, q/) 7é 0} We extend
the transition function ¢ to @ x X* x Q by p(q, wz,r) = ZsEQ o(q,w, s)p(s,z, )
and p(q,e,r) = 1if ¢ = r and 0 otherwise, forany ¢, € Q,z € Y andw € X *. For
any finitesubset L ¢ Y* andany R C Q, definep(q, L, R) = ZweLmeRw(q,w,r).

Forany MA A, letr 4 bethe seriesdefined by 4 (w) = >~ . t(@)p(q, w,7)7(r).
Forany ¢ € Q, we definethe series 4, by 7a,4(w) = 3, (g, w,r)7(r). A state
q € Q isaccessible (resp. co-accessible) if there exists qo € Q7 (resp. ¢;: € Qr) and
u € X* such that ¢(qo, u,q) # 0 (resp. (g, u,q:) # 0). An MA is trimmed if al its
states are accessible and co-accessible. From now, we only consider trimmed MA.

A Probabilistic Automaton (PA) isatrimmed MA (X, Q, ¢, ¢, 7) St. ¢, o and T teke
their valuesin [0, 1], suchthat 3° , ¢(¢) = 1 and for any state ¢, 7(q) + ¢(¢, ¥, Q) =
1. Probabilistic automata generate stochastic languages. A Probabilistic Deterministic
Automaton (PDA) is a PA whose support is deterministic.

For any class C' of multiplicity automata over K, let us denote by S ¢ (X)) the class
of all stochastic languages which are recognized by an element of C.

Rational series and rational stochastic languages. Rational series have several char-
acterization ([11,4,10]). Here, we shall say that a formal power series over Y is K-
rational iff there exists a K-multiplicity automaton A such that r = r 4, where K €
{R,RT,Q,Q*}. Let us denote by K"2¢((3)) the set of K-rational series over X and
by Si#t(X) = K™((X)) N S(X), the set of rational stochastic languages over K.
Rational stochastic |anguages have been studied in [7] from alanguage theoretical point
of view. Inclusion relations between classes of rational stochastic languages are summa-
rized on Fig 1. It isworth noting that SEP4(X) ¢ SEA(X) € Spet(X).

Let P be arationa stochastic language. The MA A = (X, Q, o, ¢, T) is areduced
representation of P if (i) P = Pa, (ii) Vg € Q, Pa,q € S(X) and (iii) the set {Pa,q :
q € Q} islinearly independent. It can be shown that Res(P) spans afinite dimensional
vector subspace [Res(P)] of R((X)). Let Q p be the smallest subset of res(P) st.
{u™'P : w € Qp} spans [Res(P)]. It is a finite prefixial subset of . Let A =
(X,Qp,p,t,7) bethe MA defined by:



S(®) sz net(e)
S5ot(D) 557(2) = sgrH(2) nQt (D) )
SN = SEA (D) St () nQt ()

Sp(®) =S (=)

SEPAD) =sEPA(D) S§PAE) = s7PA(D) = s PA() na((D)

Fig. 1. Inclusion relations between classes of rational stochastic languages.

— 1(e) =1, (u) = 0 otherwise; 7(u) = u~1P(e),
- o(u,r,ur) = u 1 P(xX*) if u,ur € Qpandz € X,
- p(u,z,v) = auu ' P(xX*)ifz € Y, uz € (QpX\Qp)Nres(P) and (uz) 1P =

-1
veQp Qol P.

It can be shown that A isareduced representation of P; A iscalled the prefixial reduced
representation of P. Note that the parameters of A correspond to natural components of
theresidual of P and can be estimated by using samples of P.

We give below an example of a rational stochastic language which cannot be gen-
erated by a PA. Moreover, for any integer NV there exists arational stochastic language
which can be generated by a multiplicity automaton with 3 states and such that the
smallest PA which generatesit has IV states. That is, considering rational stochastic lan-
guage makesit possible to deal with stochastic languages which cannot be generated by
PA; it aso permitsto significantly decrease the size of their representation.

Proposition 1. For any o« € R, let A, be the MA described on Fig. 2. Let S, =
{0, M1, X2) € R i ry, € S(O)}. If a/(27) = p/q € Q where p and ¢ are rel-
atively prime, S,, is the convex hull of a polygon with ¢ vertices which are the residual
languages of any one of them. If o/(27) ¢ Q, S, isthe convex hull of an ellipse, any
point of which, is a stochastic language which cannot be computed by a PA.

Proof (sketch).
Letrgy,, rq, andry, bethe series associated with the states of A,,. We have

cosna — sin nao cosna + sin no 1
raglan) = RO () = IR and y, (a) = o

Thesums )y 7q(a"), > enTa (a™)andy  7q, (a™) convergesince|r,, (a™)| =
O(2 ™) fori=0,1,2.Letusdenotec; = g (a™) fori = 0,1,2. Check that

4 —2cosa — 2sin« 4 —2cosa+ 2sin« and 9
o0 = o1 = o9 = 2.
0 5 —4cosa Ot 5 —4cosa 2

Consider the 3-dimensional vector subspace V of R((X")) generated by 4, r4, and
Tq, ANdletr = Xory, +A17g, +A2rg, beagenericelementof V. Wehave ) r(a") =
AoOg + A101 + A202. Theequation Aoog + Ao+ XAoog =1 deflnesaplaneH inV.

Consider the constraints (a™) > 0 for any n > 0. The elements r of H which
satisfies all the constraints (™) > 0 are exactly the stochastic languagesin H.



If a/(27) = k/h € Q where k and h are relatively prime, the set of constraints
{r(a™) > 0} isfinite: it delimites a convex regular polygon P in the plane H. Let p be
avertex of P. It can be shown that its residual languages are exactly the h vertices of P
and any PA generating p must have at least h states.

If a/(27) ¢ Q, the constraints delimite an ellipse E. Let p be an element of E. It
can be shown, by using techniques developedin [ 7], that itsresidual languagesare dense
in E and that no PA can generate p. O

Matrices. We consider the EuclidannormonR”: ||(z1, ..., x,)|| = (23 +...+a2)/2,
For any R > 0, let us denote by B(0,R) the set {x € R™ : ||z| < R}. Thein-
duced norm on the set of n x n square matrices M over R is defined by: || M| =
sup{||Mz| : = € R™ with ||z|| = 1}. Some properties of the induced norm: || M z|| <
|M]| - ||z|| for al M € R**"™ z € R™; |MN]| < ||M]-||N| foral M, N € R"*";
limy o || M*||}/*F = p(M) where p(M) is the spectral radius of M, i.e. the maximum
magnitude of the eigen values of M (Gelfand’s Formula).

Fig.2. When Ay = A2 = 1 and A1 = 0, the MA A, /4 defines a stochastic language P whose
prefixed reduced representation isthe MA B (with approximate values on transitions). In fact, P
can be computed by a PDA and the smallest PA computing itis C.

3 Identifying S**(X) in the limit.

Let S beanon empty finite sample of X*, let @ be prefixial subset of pref(S), letwv €
pref(S)\ Q,andlet e > 0. We denote by 7(Q, v, S, ¢) thefollowing set of inequations
over the set of variables {z, |u € Q}:

1(Q,v,8,€) ={[v ' Ps(wX™) = > myu” ' Ps(wX™)| < elw € fact(S)}U{D  wu=1}.
ueQR ueQ

Let DEES be the following a gorithm:

Input: a sanple S
Output: a prefixial reduced MA A= (X Q,¢,t,7)
Q —A{e}, we)=1, 7(e) =Ps(e), F— Xnpref(S)
while F#0 do {

v=ux = MinFwhereu € X" andz € X, F — F \ {v}




if 1(Q,v,S,|S|~'/%) hasno solution t hen{
Q< QU{v}, (v) =0, 7(v)=Ps(v)/Ps(vi”),
p(u, z,v) = Ps(vX")/Ps(uX™), F — FU{vx € res(Ps)|z € X}}
el se{
let (aw)weo be a solution of I(Q,v,S,|S|~'/3)
p(u, T, w) = awPs(vX*) for any we Q}}

Lemmal. Let P be a stochastic language and let wg, u1, ..., u, € Res(P) be such
that {uy ' P,u; ' P, ..., u; ' P} islinearly independent. Then, with probability one, for
any complete presentation S of P, there exist a positive number ¢ and an integer M
suchthat I({u1,...,un},uo, Sm, €) hasno solution for every m > M.

Proof. Let S be acomplete presentation of P. Suppose that for every e > 0 and every
integer M, there exists m > M such that I({u1,...,un}, uo, Sm,€) has a solution.
Then, for any integer k, there exists mj, > k such that I({u,...,un}, o, Sm,, 1/k)
hasasolution (ay g, . .., o k). Let pp = Max{1,|oq k..., |on.kl} Yo.e = 1/px and
ik = —aik/pr forl <i <n.Forevery k, Max{|v; x| : 0 <i <n} = 1. Check that

n

1 1
VEk >0 o TP Yl < — < =,
— ? ;’yvkul Smk (w ) — Pkk — k
There exists a subsequence (cvy ¢ (k) - - - » O, (k) Of (Q1k, - - ., p k) SUCh that
(Y0,6(k)> - - +» Ynp(k)) CONVErgesto (vo, ..., vn). We show below that we should have

S o viu; P P(wX*) = 0 for every word w, which is contradictory with the indepen-
dance assumption since Maxz{v; : 0 <i <n} =1.

Let w € fact(supp(P)). With probability 1, there exists an integer ko such that
w € fact(Sy, ) forany k > k. For such ak, we can write

viug 'P = (yiu; 'P —yiu; ' Ps,, )+ (% — Yigk))i  Ps,,  Vietou; Ps,.,
and therefore

n

n
< Sl (P = P, SN+ 3 b~ gl + 1
=0 =0

n

Zmu;lP(wE*)

=0

which convergesto 0 when & tends to infinity. O

Let P beastochasticlanguageover X, let A = (A;);c; beafamily of subsetsof X*,
let S be afinite sample drawn according to P, and let Pg be the empirical distribution
associated with .S. It can be shown [13,9] that for any confidence parameter ¢, with a
probability greater than 1 — §, forany i € I,

VC(A)—log &
|Ps(A;) — P(Ay)] < o/ Yl ces (1)

where VC(A) is the dimension of Vapnik-Chervonenkisof A and c is a constant.

When A = ({wX*})yex+, VC(A) < 2. Indeed, let r,s,t € X* andletY =
{r, s, t}. Let u, (resp. u,+, us+) bethelongest prefix shared by ~ and s (resp. r and ¢, s
and t). One of these 3wordsisaprefix of thetwo other ones. Supposethat u .. isaprefix
of u,+ and us;. Then, there exists no word w such that wX'* N'Y = {r, s}. Therefore,
no subset containing more than two elements can be shattered by A.

Letw(e,6) = S (2 —log2).



Lemma2. Let P € S(X) andlet S bea complete presentation of P. For any precision
parameter e, any confidence parameter §, any n > ¥ (e, §), with a probability greater
than1 — ¢, |P,(wX*) — P(wX™)| < eforal w € X*.

Proof. Useinequality (1). O

Check that for any o such that —1/2 < o < 0 and any § < —1, if we define
er = k® and 6, = kP, there exists K such that for all k > K, wehave k > W(ey, o).
For such choices of o and 3, we havelim_.~, ¢, = 0 and ZkZI O < 00.

Lemma3. Let P € S(X), ug, u1,...,u, € res(P)and ay, ..., a, € R besuch that
uy'P = Y1 a;u; ' P. Then, with probability one, for any complete presentation S
of P, thereexists K st. I({uy,. .., un},uo, Sk, k~ /%) hasa solution for every k > K.

Proof. Let S be a complete presentation of P. Let g = 1 andlet R = Maz{|o]| :
0 < i < n}. With probability one, there exists K7 st. Vk > Kq,Yi = 0,...,n
lu; ' Sk| > W([kY3(n+ 1)R]™Y, [(n+ 1)k 71). Let k > Ky. Forany X C X%,

lug " Psy (X Zazu Ps, (X)] < Jug ' Psy (X)—ug ' P(X) [+ |evi[u; ' Ps, (X)—u; ' P(X)].

From Lemma 2, with probability greater than 1 — 1/k?2, for any i = ,n and
any word w, |u; ' Ps, (wX*) — u; 'P(wX*)| < [kY3(n + 1)R]! therefore
fuy P, (w*) = S0 avu; P, (w*)| < k=13,
Forany integer k > K1, let A, betheevent: [ug ' Ps, (wX*)=S"" | au; ' Ps, (wX*)| >
k=1/3. Since Pr(Ay) < 1/k?, the probability that afinite number of A, occursis 1.
Therefore, with probability 1, there exists an integer K such that for any & > K,
I({uy,...,un},uo, Sk, k~/3) hasasolution. i

Lemmad. Let P € S(X), letug, uy, ..., u, € res(P) suchthat {u;'P,..., u, P}
is linearly independent and let oy, . .., v, € R besuchthat uy ' P = Z la u; 1p.
Then, with probability one, for any complete presentation S of P, there exists an mte
ger K such that Vk > K, any solution @y, ..., &, of I({u1,...,un},uo, Sk, k=/3)
satisfies |@; — a;| < O(k~/3) for 1 < i < n.

Proof. Let wq,...,w, € X* be such that the square matrix M defined by M|i, j] =
u;lP(wiE*) forl <i,j < nisinversible. Let A = (a1,...,a,)", Uy = (uglp(wlﬂ*),
.,uo_lP(wnE*))t. We have M A = Uy. Let S be a complete presentation of P, let
k € Nandlet ay,...,a, beasolution of I({u1,...,un},uo, Sk, k~'/3). Let M
be the square matrix defined by M,[i, j] = uj_ngk (w; %) for 1 < 4,5 < n, let

Ay = (aq,...,an)t and Uy p = (ug ' Ps, (w1 X%), ..., ug * Ps, (w, 5*))t. We have

1My A = Uo il* = [ug ' Ps (wiZ*) = > @u; ' Ps, (wi 2*))* < k™%,

i=1 j=1
Check that

A— A, = Mﬁl(MA_UO‘f'UO — U07k +U07k — M Ay + M A —MAk)



and therefore, forany 1 <i <n
i — @] < [[A = Al < [IM7H[(|Uo = Uoell +n'/2k=Y2 4[| My, — M][[| Ag])-

Now, by using Lemma 2 and Borel-Cantelli Lemma as in the proof of Lemma 3, with
probability 1, there exists K such that for dl & > K, |[Uy — Upx| < O(k~1/3)
and || M), — M| < O(k~'/3). Therefore, for dl k > K, any solution ay, ..., a, of
T({uy, ... un}, uo, S, k=1/3) satisfies |@; — a;| < O(k=/3) for1 <i < n. O

Theorem 1. Let P € S;*(X) and A be the prefixial reduced representation of P.
Then, with probability one, for any complete presentation S of P, there exists an in-
teger K such that for any ¥ > K, DEES(S}) returns a multiplicity automaton Ay
whose support isthe same as A’s. Moreover, there exists a constant C' such that for any
parameter o of A, the corresponding parameter o, in A, satisfies |o — ay| < Ck~1/3.

Proof. Let Qp be the set of states of A, i.e. the smallest prefixial subset of res(P)
suchthat {u='P : u € Qp} spans the same vector space as Res(P). Letu € Qp, let
Qu={ve@plv<u}andletz € X.

— If {v7'Plv € Q,U{ux}} islinearly independent, from Lemma 1, with probability
1, there exists ¢,,,, and K., such that for any k& > K., I(Qu, ux, Sk, €4,) hasno
solution.
— If there exists (@ )veq, suchthat (uz)~'P = 37 o a,v~ P, from Lemmas,
with probability 1, thereexistsan integer K, suchthat forany k > K., [(Qu, ux, Sk, k= /%)
has a solution.

Therefore, with probability one, there exists an integer K such that for any k& > K,
DEES(Sk) returns a multiplicity automaton A whose set of states is equal to @ p.
Use Lemmas 2 and 4 to check the last part of the proposition. O

When thetargetisin S@at (X)), DEES can be used to exactly identify it. The proof is
based on the representation of real numbers by continuousfraction. See [8] for asurvey
on continuous fraction and [6] for a similar application.

Let (e,,) beasequence of non negativereal numberswhich convergesto0, letz € Q,
let (y,,) be asequence of elementsof Q suchthat |« — y,,| < €, for dl but finitely many
n. It can be shown that there exists an integer N such that, for any n > N, z isthe
unigue rational number § which satisfies |y, — %’ <e, < q% Moreover, the unique
solution of these inequations can be computed from y ..

Let P € Sp** (%), let S be acomplete presentation of P and let A the MA output
by DEESoninput Sy. Let A;, bethe MA derived from A, by replacing every parameter
ay, with asolution 2 of ‘a —BI< k14 < q%

Theorem2. Let P € Sp*(X) and A be the prefixial reduced representation of P.
Then, with probability one, for any complete presentation S of P, there exists an integer
K suchthat Vk > K, DEES(S) returnsan MA Ay, suchthat A, = A.

Proof. From previous theorem, for every parameter o of A, the corresponding param-
eter oy, in Ay, satisfies |o — ai| < Ck~'/? for some constant C. Therefore, if k is
sufficiently large, we have |or — a,| < k~1/* and there exists an integer K such that

a = p/q isthe unique solution of ‘oz —-2I< k4 < q% O




4 Learningrational stochastic languages

We have seen that Si** (X)) is identifiable in the limit. Moreover, DEES runs in poly-
nomial time and aims at computing a representation of the target which is minimal and
whose parameters depends only on the target to be learned. DEES computes estimates
which are proved to converge reasonably fast to these parameters. That is, DEES com-
pute functions which are likely to be close to the target. But these functions are not
stochastic languages and it remains to study how they can be used in a grammatical
inference perspective.

Any rational stochastic language P defines a vector subspace of R((X')) in which
the stochastic languages form a compact convex subset.

Proposition 2. Letpy, ..., p, benindependent stochastic languages. Then, A = { @ =
(1,...,0p) ER™: 3" ap; € S(X)} isa compact convex subset of R”™.

Proof. First, check that for any @, 3 € Aandany v € [0, 1], the series "7, [ya; +
(1 — v)B;]p: isastochastic language. Hence, A is convex.

For every word w, the mapping @ — """, a;p;(w) defined from R™ into R is
linear; and so is the mapping @ — i, ;. A s closed since these mappings are
continuous and since

A= {3 cR": Za,-pi(w) > OforeverywordwandZai = 1} .
=1

i=1

Now, let us show that A is bounded. Suppose that for any integer k, there exists
oy € Asuchthat | @'y > k. Since @' /|| @« || belongsto the unit spherein R™, which
is compact, there exists a subsequence @ ;) such that @ 4z /[ @ s(x) || convergesto
some o satisfying || @'|| = 1. Let g, = > 1, a;ppi andr = >0, cip;.

Forany 0 < A < [[@xll, pr + B = (1 = 2)p1 + = aw is astochastic

ekl ]l
language since S(X) is convex; for every A > 0, p; + A‘ﬂ—‘%% convergesto p; + Ar
whenl — oo, whichisastochastic languagesince A isclosed. Therefore, forany A > 0,
p1 + Ar isastochastic language. Since p1(w) + Ar(w) € [0, 1] for every word w, we
must have r = 0, i.e. a; = 0 forany 1 < ¢ < n since the languages p1, ..., p, are
independent, which isimpossible since | @ || = 1. Therefore, A isbounded. O

The MA A output by DEES generally do not compute stochastic languages. How-
ever, we wish that the series r 4 they compute share some properties with them. Next
proposition gives sufficient conditions which guaranty that 3, -, r A(ZF) =1.

Proposition3. Let A = (¥, Q = {q1,..-,qn},¢,t,7) be an MA and let M be the
square matrix defined by M, j] = [¢(qq, X, qj)]lgingn. Suppose that the spectral ra-
diusof M satisfiesp(M) < 1.Let 7" = (t(q1), .-, tlgn)) and 7 = (7(q1), - .., T(qn))".

1. Then, thematrix (I — M) isinversibleand Y, ., M* convergesto (I — M)~".

2. g € QYK > 0,35 7aq, (5%) convergesto MK 2" (I— M) ~1[i, j]7(q))
and >, - 7a(Z*) convergesto © MK (I — M)~ T,

3.1fYg € Q,7(q) + ¢(q,¥,Q) = L, then¥g € Q,74,4(Y 50 X*) = 1. If moreover
Y geqila) =L thenr(}, -, Tk)=1.



Proof. 1. Sincep(M) < 1,lisnotaneigenvalueof M and I — M isinversible. From
Gelfand’'sformula, limy_. || M*|| = 0. Sincefor any integer k, (I — M)(I + M +
oot MF) =T — M thesum Y, ., M* convergesto (I — M)~

2. Since 14,4, (Z%) = YT MM gl(a5), Yps e rae (EF) = MR (1 -
M)~y glr(g5) and 3oy g ra(ZF) = 30 W(@i)rag (D) = MR~
M)~17.

3 Lets; =14, (X" forl<i<nands = (si,...,s,)" . Wehave (I — M)s =
7. Since I — M isinversible, thereexistsoneand only one s such that (I — M) s =
7. Butsince(q) + (¢, ¥, Q) = 1 for any state ¢, the vector (1,...,1)* isclearly
a solution. Therefore, s; = 1 forl < i < n. If quQ t(q) = 1, then r(2*) =
YqeqU@)ra (¥7) = 1. 0

Proposition4. Let A = (¥,Q,»,t,7) be a reduced representation of a stochastic
language P. Let Q = {q1, ..., qn} andlet M bethe square matrix defined by M i, j] =
le(gi, ¥, 05)],<; j<,- Thenthe spectral radius of M satisfies p(M) < 1.

Proof. From Prop. 2, let R besuch that {a’ € R" : 37" | a;Pag € S(X)} C
B(0, R). Forevery u € res(P4) and every 1 < i < n, we have

u Py, = 21<j<n ‘P(Qia%qj)PA,qj.
o PA»QL‘ (UJE*)

Therefore, for every word v and every k, we have |p(q4, u, ¢;)| < R - Pa g, (uX*) and

‘@(qwzk7qj)| < Z |90(qtau7q])| < R'PA,qq,(EZk)-
uexXk

Now, let A be an eigen value of M associated with the eigen vector v and let i be an
index such that |v;| = Maxz{|v,| : j = 1,...,n}. For every integer k, we have

n
Mo = Ny and [Veoi| = S (i, 55, q5)05] < nR - Pag, (529)]

j=1
which impliesthat || < 1 since P4 ,, (X=*) convergesto O when k — oo. O
If the spectral radiusof amatrix is < 1, the power of M decrease exponentially fast.

Lemmab. Let M € R™*™ be such that p(M) < 1. Then, there exists C' € R and
p € [0,1[ such that for any integer k > 0, || M¥|| < Cp*.

Proof. Let p €]p(M), 1]. From Gelfand’s formula, there exists an integer K such that
forany k > K, |M*||'/* < p.Let C = Maz{||M"||/p" : h < K}.Letk € Nandlet
a,b € Nbesuchthat k = aK +bandb < K. We have

MO

IR = (M < MM < pt [ MP) < p Ee

Proposition 5. Let P € S;* (). There exists aconstant C' and p € [0, 1] such that for
any integer k, P(X=F) < Cp*.



Proof. Let A = (X, Q, ¢, ¢, 7) beareduced representation of P andlet M bethe square
matrix defined by Mi, j] = [0(q:, ¥, ¢;)], <; j<,,- From Prop. 4, the spectral radius of
M is <1. From Lemma 5, there exists C'; and p € [0, 1] such that || M*|| < Cyp* for
every integer k. Let 14 = (¢(q1), - .-, t(qn)) and 74 = (7(q1), - - ., 7(qn))*. We have

P(ZZFY < leall - (IMF( - (T = M)7H| - | 74] < Cp*
with C = Cy||ia| - |(1 = M)~ - [|7A]l. B

It is not difficult to design an MA A which generates a stochastic language P and
such that ¢(q, u, ¢’) is unbounded when v € X'*. However, the next proposition proves
that this situation never happenswhen A is areduced representation of P.

Proposition 6. Let P € SE* (X)) andlet A = (X, Q, ¢, ¢, 7) be areduced representa-
tion of P. Then, there exists a constant C' and p € [0, 1] such that for any integer & and

any pair of states ¢, ¢', >, c sx l0(q,u, ¢')| < CpF.

Proof. Let k beaninteger andlet ¢, ¢’ € Q. Let P, = {u € X* : p(q,u,q') > 0} and
Ny = X%\ P

PAq ’U,E )
PAq(UE*>

> uep, P2, u,q")

71
PA, = A, 7
! 7'€Q Zuepk PA#‘I(U‘E*) !

PPy, = Z =

uE Py, u€ Py,

is a stochastic language which is a linear combination of the independent stochastic
languages P4 4. From prop. 2, there exists a constant R which dependsonly on A st.

> elg,uq)

u€ Py

= > @lgu,q) <R D Pag(uX).

u€ Py u€ Py,

Similarly,wehave|Y o v (0 u,¢)| = X en, 19( w4, d)| < RY e n, Pag(uX™).
Let C and p €]0, 1[ be such that P4 ,(X=%) < Cp* for any state ¢ and any integer k.
We have
3 lelgu, ) SR Y. Pag(us*) < RCp.
ue Xk ue Xk
O

MA representation of rational stochastic languages are unstable (see Fig. 3). Arbi-
trarily close to an MA A which generates a stochastic language, we can find an MA B
suchthat thesum ) .. 7p(w) convergesto any real number or even diverges. How-
ever, the next theorem shows that when A is a reduced representation of a stochastic
language, any MA B sufficiently closeto A defines a serieswhich is absolutely conver-
gent. Moreover, simple syntactical conditionsensurethat r g (X*) = 1.

Theorem 3. Let P € Sp*(X) andlet A = (X, Q, pa,ta,74) beareduced represen-
tation of P. Let C4 and p4 €]0, 1] be such that for any integer & and any pair of states
04" Y uese [0a(g,u,q")| < Caph. Then, for any p > pa, thereexists C and a > 0
such that for any MA B = (¥, Q, ¢, LB, ) Satisfying

Vg, q' € Q. Yz € X, lpa(q,z,q") —¢plg,2,¢")| < o 2



Fig.3. These MA compute a series r. such that >, _c.7c(w) = 1if ¢ # 0 and
> wes~ ro(w) = 2/5. Note that when e = 0, the series o 4, and 7o 4, are dependent.

wehave ) v lpB(q,u,q) < Cp" for any pair of states ¢, ¢’ and any integer k. As
a conseguence, the series r i is absolutely convergent. Moreover, if B satisfies also

Vg € Q,75(q) + ¢n(g, Q) =1and Y ip(q) =1 €)
9€Q
then, @ can be chosen such that (2) implies that r 5 ,(X*) = 1 for any state ¢ and
rp(X*) = 1.

Proof. Let k besuchthat (2nC4)Y/* < p/p4 wheren = |Q|. Thereexists o > 0 such
that for any MA B = (¥, Q, v, 5, T5) saisfying (2), we have

Va,q €Q, Y len(a,u,q) — palg,u,¢)| < Caply.
ue Xk

Since Y, e [palg,u,q)| < Caphy, wemust have also

k
Z lon(q,u,q')| < 2Cap" < %
ue Xk

Let C1 = Maz{}_, cx<rlvp(q,u,q)| : ¢,¢" € Q}. Letl,a,b € N such that
l=ak+bandb < k.Letu € X' andletu = ug...u, Where |u;| = kfor0 <i < a
and |u,| = b. For any pair of states qo, gq+1, We have

a
0p(q0,u.qar1) = Y []en(a uigiv1)

q1,--,9a €Q i=0

and

Z ©B(q0, U, Gat1) Z Z Z H@B(Qi,’uia%ﬂ)

ue X! UQ ey Uhq—1EXF ug €X0 q1,...,q0 €Q 1=0

Z Z Z H@B(qi,ui,qz'ﬂ)

q15-qa€Q ug,...,uq_1€EXF u, € X0 i=0

a—1

- Z H ZsoB(qi,u,qm) Z@B(qa,umaﬂ)

q1,.-,4a€Q i=0 \ucxk u€ X



cy
E-T-

E\ @
Hence, >, c s lvB(q0, 4, gmi1)| < n® - (’J,—L) -C1 < Cpt where C =
Now, let us provethat r g is absolutely convergent.

Do) <> > ws@es(quq)Ta(d) < C

weX* keNueXk q,q'€Q

p

where C" = Cn*Maz{[t5(q)75(d)| - 4.¢' € Q}/(1 — p).

Lastly, let M be the square matrix defined by M s[i, j] = p5(qi, 2, q;). Since the
spectral radius of a matrix depends continuously on its coefficients and since A isare-
duced representation of a stochastic language, any MA satisfying (2) with o sufficiently
small must have a spectral radius <1 (Prop. 4). Therefore, if B satisfies (3) and (2) with
a sufficiently small, the Prop. 3 entails the conclusion. O

It remains to show how a series which converges absolutely to 1 can be used to
approximate a stochastic language.

Letr beaseriesover X'suchthat ) | . 7(w) convergesabsolutely to 1. Therefore,
r(X) = Y ,cx r(u) is defined without ambiguity for every X C ¥ and r(X) is
boundedby 7 = >, . 5. [r(u)|. Let S be the smallest subset of X* such that

ceSandVu € X" Vo € Y ue Sandr(uxX™) > 0= ux € S.

S is a prefixial subset of X'* and Vu € S,r(uX*) > 0. For every word u € S, let
us define N(u) = U{uzX* : z € X r(uxX*) < 0} U{u: ifr(u) < 0}and N =
U{N(u) : u € X*}. Then, for every u € S, let usdefine \,, by:

r(uxX*)

)\6 = (]_ — T(N(E)))i and /\uz = AUT(UIE*) — T(N(U,x)) .

Lemma6. For everywordu € S, e"™)/7 < )\, < 1.

Proof. First, check that (N (u)) < 0 for every u € S. Therefore, A, < 1. Now, check
that if u,uv € Sthenv =eor N(u) N N(uv) = . Letu = z; ...z, € X* where
L1,...,Tp € Y andlet ug = eand u; = u;_1x; for 1 <7 < n.Wehave

n

_ r(ui2”) T (o @)\
=1l r(ui %) —r(N(u)) 11 <1 r(ui 2) )

=0 1=0

and

- (N (uq)) (N (ui))
log Ay ;log (1 () ) 7 2 )
Since r(u; X*) < T, logA, > > r(N(u;))/T = r(UoN(w;))/T > r(N)/T.
Therefore, A, > e"(N)/T, ]

Let p, bethe seriesdefined by: p,-(u) = 0if u € N and p,-(u) = A, r(u) otherwise.
We show that pr is a stochastic language.

Lemma7. — p.(e) + XD  cgnnr(@X™) =1,



— Foranyu € X*andany x € X, if ux € S then

pr(ux) + Ayz Z r(uzyX™) = Ayr(uzX™).
{yeX:uzyeS}

Proof. First, check that for every u € S,
pr(u) + Ay Z r(uzX™) = A (r(uX™) — r(N(u)).
reu—tSNy
Then, p,(e) + Ae D cgne T(@X*) = A(1 —7(N(g))) = 1. Now, let w € X* and

v € Ystour € 5, pr(ux) + Mz D (yesupyesy "Wy L") = Aue(r(uzl™) —
r(N(ux))) = Ayr(uzX*). O

Lemma8. Let ) bea prefixial finite subset of ¥'* andlet Qs = (QX \ Q) N S. Then
pr(Q)=1- Z Aur(uxX™).

Ur€EQs,x€X

Proof. By inductionon @Q. When @ = {e}, the relation comes directly from Lemma 7.
Now, suppose that the relation is true for a prefixial subset Q' let ug € Q" and g € X
such that upzg ¢ Q' andlet Q = Q' U {upzo}. We have

Pr(Q) = pr(@) +pr(uoro) =1— > Aur(uwX™) + pr(uowo)
ur€Ql,xeXr

where Q. = (Q" X'\ Q) N S, from inductive hypothesis.
If ugxg ¢ S, check that pT(U()I()) = 0 and that Qs = Q; Therefore, pr(Q) =

1-— Zuers,er At (uzX*).
If ugzg € S,then @, = QIS \ {’U,Omo} U (UQ$QE N S) Therefore,

pr(Q) =1— Z Aur(uzX™) + pr(uoxo)

ur€Q ,xeX

=1- Z Aur(uzX*) — Ay r(ugzo X™)
UT€EQs,x€X

Fhugze D r(womorZ”) + pp(uowo)

uprorES,xEX

=1- Z Ayr(uzX*) from Lemma?. O

UT€EQs,x€X

Proposition 7. Let r be a formal series over X suchthat ) .. r(w) converges ab-
solutely to 1. Then, p,. is a stochastic language such that for every u € X*\ N,

(1 +7(N)/F)r(u) < e"™M/Tr(w) < p,(u) < ru).

Proof. From Lemmas, the only thing that remainsto be provedisthat p . is astochastic
language. Clearly, p,-(u) € [0, 1] for every word ». From Lemma 8, for any integer &,
L=p(Zh) < Y r(uZ) <r(Z7F)
ueXk+1ing

which tendsto O since r is absolutely convergent. O



To sum up, DEES computes MA A whose structure is equal to the structure of the
target from some steps, and whose parameters tends reasonably fast to the true param-
eters. From some steps, they define absolutely rational series r 4 which converge abso-
Iutely to 1. By using these MA, it is possible to efficiently computep.. , (u) or p,., (uX™*)
for any word u. Moreover, since r 4 convergesabsolutely and since A tendsto the target,
theweight r 4 (V) of the negative valuestendsto 0 and p,., convergesto the target.

5 Conclusion

We have defined an inference algorithme DEES designed to learn rational stochastic
languages which strictly contains the class of stochastic languages computable by PA
(or HMM). We have shown that the class of rational stochastic languages over Q is
strongly identifiable in the limit. Moreover, DEES is an efficient inference algorithm
which can be used in practical cases of grammatical inference. The experimentswe have
already carried out confirm the theoretical results of this paper: the fact that DEES aims
at building anatural and minimal representation of the target providesa very significant
improvement of the results obtained by classical probabilistic inference algorithms.
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