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Abstract. A stochastic generalisation of residual languages and opera-
tions on Probabilistic Finite Automata (PFA) are studied. When these
operations are iteratively applied to a subclass of PFA called PRFA, they
lead to a unique canonical form (up to an isomorphism) which can be
efficiently computed from any equivalent PRFA representation.

1 Introduction

Probabilistic Automata are formal objects, equivalent to Hidden Markov Models
under many aspects [6], which can be used to model stochastic processes in many
application domains such as Pattern Recognition [1,2], Information Extraction
[3], Bioinformatics [4, 5]. A probabilistic automaton (PFA) has a structural com-
ponent, which is a non deterministic automaton (NFA), and several continuous
parameters which specify the probability for a state to be initial, to be terminal,
and the probability to reach a state from another one while reading or emitting a
given letter. A probabilistic automaton generates a regular stochastic language.

Determining an appropriate PFA structural component from a finite number
of observations is an important open problem. In order to tackle this problem,
it is necessary to identify subclasses of PFA which can be identified from given
data. Deterministic PFA (PDFA), i.e. PFA whose structure is a deterministic
NFA (DFA), have this property and have been used in several inference works
[7-10]. Unfortunately, contrary to the case of non stochastic regular languages,
the class of stochastic languages which can be represented by PDFA is a very
restricted subclass of the class of regular stochastic languages and it is necessary
to find out new richer subclasses of PFA.

Several works have pointed out the importance of residual languages for
Grammatical Inference [11,12]. A residual language of a language L is any lan-
guage of the form {w|uw € L}, for some word u. Most classical inference al-
gorithms try to identify the residual languages of the target language L from
a finite sample of L. A stochastic generalisation of residual languages has been
introduced in [13] and has lead to the definition of Probabilistic Residual Fi-
nite State Automata (PRFA). A PRFA is a PFA whose states define residual
languages of the language which is generated.

Here, we methodically pursue this study by introducing a reduction operator
and a saturation operator which act on PFA (Section 3). We show that if a
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stochastic language P can be generated by a PRFA, then iteratively applying
the reduction and saturation operators to any PRFA which generates P provide
a single object (up to an isomorphism): the canonical PRFA of L (Section 4).
These canonical PRFAs are based on particular residual languages of P which
cannot be decomposed by using other residual languages of P: we call them
prime residual languages. Finally, we show in Section 5 that all the operations
that we define are polynomial (whereas similar operations for non stochastic
languages are PSPACE-complete [14]).

2 Preliminaries

2.1 Automata and languages

Let X be a finite alphabet, and X* be the set of words on X. We denote by &
the empty word and by |u| the length of a word u. A language is a subset of
X*. A nondeterministic finite automaton (NFA) is a tuple A = (¥, Q, Qo, F, )
where @ is a finite set of states, Qg C @ is the set of initial states, F' C @ is
the set of final states, & is the transition function defined from Q x X to 29.
We also denote by & the extended transition function defined from 2% x X* to
2Q. An NFA is deterministic (DFA) if (o contains only one element gy and if
Vg € Q,Vr € X, Card(d(q,z)) < 1. A word u € X* is recognized by an NFA
A =(X,Q,Qq, F,d) if §(Qo,u) N F # ( and the language recognized by A is
Ly ={u € X* | §(Qo,u) N F # 0}. Let Q' C Q. We denote by Ly ¢ the
language {v € X* | §(Q',v) N F # @}. When Q' contains exactly one state g,
we simply denote L4, g’ by L4,,. It can be proved that the class of recognizable
languages is identical to the class of regular languages (Kleene Theorem) and that
every recognizable language can be recognized by a DFA. There exists a unique
minimal DFA that recognizes a given recognizable language (minimal with regard
to the number of states and unique up to an isomorphism). Let L be a language
and u be a word. The residual language of L wrt v is u 'L = {v | uv € L}. A
Residual Finite State Automaton (RFSA) is an NFA A = (¥, Q, Qo, F, ) such
that, for each ¢ € ), La,4 is a residual language of L4 [14].

2.2 Probabilistic automata and stochastic languages

A probabilistic finite state automaton (PFA) is a tuple (¥, Q,v,t,7) where @
is a finite set of states, ¢ : @ x ¥ x @ — [0,1] is the transition function,
t: @ — [0,1] is the probability for each state to be initial and 7 : Q — [0,1] is
the probability for each state to be terminal. A PFA need satisfy > o t(q) =1
and for each state ¢, 7(q) + > cx D yeq P(0,a,4') = 1. Let ¢ also denote the
extension of the transition function, defined on @ x X* x @ by ¢(g,wa,q') =
Eq”EQ w(g,w,qd")p(d",a,q") and ¢(g,e,q") = 1if ¢ = ¢' and 0 otherwise. We
extend ¢ again on @ x 2" x 29 by ¢(q,U,R) = 3 ,cty orer ¢(¢, w,7). The
set of initial states is defined by Qr = {q € Q | t(¢) > 0}, the set of reachable
states is defined by Qreach = {¢ € @ | Ir € Qr, p(r, X*,q) # 0} and the set of
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terminal states is defined by Q1 = {q € @ | 7(¢) > 0}. The support of a PFA A =
<Ea Q7 "2 T) is the NFA <Z7 Qa Qfa QT7 6) such that 6(q7 .’L') = {ql|<p(Q7 z, ql) 7£
0}. A PFA is admissible if for any q € Qreach, ¢(¢, X%, Q1) # 0.We shall only
consider admissible PFA. A probabilistic deterministic finite state automaton
(PDFA) is a PFA whose support is deterministic.

A stochastic language on X is a function P defined from X* to [0, 1] such that
Y wess P(u) =1. For any W C X*, let P(W) =, . P(w). Let S(X) be the
set of stochastic languages on X. Let A = (¥, Q, p,t,7) be an admissible PFA.
Let P4 be the function defined on £* by Pa(u) =3, /coxo U@ (e u,¢)7(q")-
It can be proved that P4 is a stochastic language on X which is called the
stochastic language generated by A.
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Fig.1. An example of PFA A on ¥ = {a}: t(q1) = 5/8,t(q2) = 3/8,é(q1,a,q1) =

0: ¢(q11 a, qz) = 1: ¢(q2’ a, ql) = 1/4: ¢)(q2: a, q2) = 1/4! T(ql) =0 and T(q2) = 1/2 For
sake of clarity, the letter a has not been drawn, nor null parameters such as ¢(q1,a, q1)
or 7(q1). We have P4(e) = 3/16 and Pa(a) =5/8-1-1/2+3/8-1/4-1/2 = 23/64.

For every q € @, we denote by A, the PFA < X, Q, ¢, 14,7 > where 14(¢) = 1.
Py, = Pa, is the stochastic language generated from ¢. Note that for any
word u and any state ¢, ¢(q,u, Q) = Pa,,(uX*). Let L4 = {Pa,y|q € Q}. Let
A=< X,Q,p4,04,74 > and B =< X, Q,pp,tp,7T8 > be two PFAs. A and B
are equivalent if they define the same stochastic language, i.e. if P4 = Pg. A
and B are state-equivalent if P4 = Pp and if for every ¢ € @), P4,y = Ppgy. A
and B are isomorphic (A ~ B) if they are state-equivalent and if they have the
same support.

We extend the notion of residual languages to the stochastic case as follows.
Let P be a stochastic language, the residual language u—'P of P with respect
to u associates with every word w the probability u=! P(w) = P(uw)/P(uX*) if
P(uX*) #0.If P(uX*) =0, u~'P is not defined.

Let £ C S(X) be a finite set of stochastic languages. We define the convex hull
of £ by conv(L) ={L € S(X)|3Ly,...,Ln € £,3A1,... X > 0|L =37 ML}
For any P € conv(L), there exists a maximal subset of £ that we denote by
cov(P, L) such that P = 3"p .. pc) Ap, Py and Ap, > 0. We say that £ is a
residual net if for any P € £ and any letter € ¥, we have 27! P € conv(L).
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Fig. 2. B and C are two PFAs on ¥ = {a} which are state-equivalent but not isomor-
phic. They are equivalent to the PFA represented on Fig. 1.

Example 1. Consider the PFA B on Fig. 2. We have Pg = (Pp,q, + PB,4.)/2,
so Pp € COTZ'U({PB’QI,PB’%}). As Ppg, # PBg,; COU(PB,QU{PB,QUPB,IM}) =
{Pg,4, }- The set {Pp.q,, PB,q, } is not a residual net. Indeed, a=' Pp 4, & conv({Ps,q,,
Ppg.}) as a='Pg g, (€) = 1/2, Pp4, (€) = 0 and Pg,g,(e) = 3/8. On the other

hand, {Pg,q,, PB,¢s, PB,qs> PB,q. } is & residual net.
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A PRFA is a PFA A = (X, Q, p,,7) such that every state defines a residual
language, i.e. such that Vg € Q,3u € Z*, L4, = u ' P4 [13].

We denote by Lpra(X) (resp. Lppra(X), resp. Lprra(X)) the set of
stochastic languages generated by some PFA (resp. PDFA, resp. PRFA). It can
be shown that Lrpra(X) C Lrrra(X) C Lpra(X) [13]. Each of these classes
can be characterized in terms of residual languages [13].

Let P be a stochastic language:

— P € Lppra(X) iff P has a finite number of residual languages.

— P € Lprra(X) iff there exists a residual net £ composed of residual lan-
guages of P such that P € conv(L).

— P € Lpra(X) iff there exists a residual net £ such that P € conv(L).

3 Reduction and saturation of probabilistic finite
automata

It is sometimes possible to suppress a state from a PFA while keeping the asso-
ciated stochastic language. The reduction operator defined below takes as input
a PFA A and a state ¢ of A and outputs

— {A}if Pag & conv(La \ {Pa}),
— a set of PFAs equivalent to A which stem from the deletion of ¢ otherwise.

Definition 1. Let A = (X,Q,,t,7) be an admissible PFA, let ¢ € Q, let
Q' =Q\{q} and let A;;‘ ={(A)reqr| A\r € RZ® and Py, = ZTEQ, ArPar}.



— IfA2 =0, i.e. Pag & conv(La\{Payg}), then red(A,q) = { 1,
- Otherwzse red(A,q) is composed of the PFAs A' = (X,Q",¢',J/, 7"} such
that there ezists (A )reqr € Aj;‘ such that
[ ] 7" = TlQI’
o /(r)=u(r) + Ae(q), for allr € Q'
e ' (r,z,8) = p(r,z,s) + Asp(r,z,q) for allr,s € Q' and z € X.

It can easily be checked that every element in red(A4,q) is an admissible PFA.
Note that for any A’ € red(A,q) and any states r and s of A, p(r,z,s) #
0= ¢'(r,z,s) # 0 and (r) # 0 = /(r) # 0. However, two different PFAs in
red(A, q) may have different support.

Ezample 2. Consider the PFA B defined on Fig. 2. We can show that Pg 4, =
(PBaql + PB,Q2)/2 and that Ppg, = (PB,Ql + 5P, + 2PB,qe)/8 = (P31QI +
3PB,(12)/4

Proposition 1. Let A be a PFA, let q be one of its states and let A' € red(A,q).
Then, A' is equivalent to A and for any state v of A', P4, = P,

Proof. Let A = (X,Q,p,.,7) be a PFA, let ¢ € Q, let A' = (X, Q",¢',/,T') €
red(A,q). Suppose that A’ # A and let (\,) € A;;‘ be such that Py, =
> req ArPa,r. For any state r of @', we have Par () = 7(r) = Pa,(¢). Now,
assume that for any word w of length < k and any state r of @' we have
Py r(w) = Py (w). Let = be a letter, we have:

PA’,T(:EU}) = Z cp'(r,m, S)PA’,S(w) = Z (cp(r,x,s) + /\590(7"71'7(1)) PA,s(w)

s€Q’ s€Q’
= Z (p(T’,.Z,S)PA’S(U)) + (P('f',x,q) Z )‘SPA,S(U))
s€Q’ s€Q!
=Y o(r,@,5)Pas(w) + (1, 2,q)Pag(w)
SEQ’
= Z o(r,z,8)Pa s(w) = Pa,(zw).
SEQ

Then Py, = P4, for any r of Q'. We remark that

Py = V(s)Pas =Y (Us)+Ast(q) Pas

seEQ’ seEQ’
=Y us)Pas+ (@) Y AsPas =D 1(s)Pa, = Pa.
SEQ! SEQ’! sEQ

We shall say that a PFA is reduced if none of its states can be reduced while
preserving the associated language.

Definition 2. A PFA A is reduced if for every state q, red(A,q) = {A}.
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Fig.3. D € red (C,q4) using Pc,q, = 3Pc.,q, + 3Pc.,q; and E € sat (D).

Proposition 2. Every PFA is equivalent to a reduced PFA.
Proof. Any PFA is reduced or equivalent to a PFA which has less states. O

Two elements of red(A, q¢) may not be isomorphic, even if they are reduced
(see Fig. 4). We shall obtain a unique element (up to an isomorphism) by adding
as much transitions as possible while preserving the associated stochastic lan-
guage. This will be achieved by using the saturation operator.

Definition 3. Let A ={(X,Q,p,t,7) be a PFA. We define sat(A) as the set of
PFA A' = (X,Q,¢',\/,7) such that for any states q,7 € Q, any letter x € X,

there exist non negative real numbers A7 . such that

— 7Py, = E o As P,y and [Pa,, € cov(z™" Py q,ﬁA) =M. >0,
—Pa=3 gt ( )PAT and [Pa,r € cov(Pa,L4) = (r) > 0],
— (e, 8) = A7 0(r, 2, Q).

It can easily be checked that any element in sat(A) is an admissible PFA.

Proposition 3. Let A be a PFA and let A' € sat(A). Then, A and A' are
state-equivalent and for any state g of A, Paq = Par 4

Proof. Let A = (X,Q,¢,t,7) be a PFA and let A" = (X, Q,¢',,7) € sat(A).
We have for any state ¢, Pa 4(¢) = 7(¢) = Pa,4(g). Now assume that for any
word w of length < k, and for any state ¢, Par 4(w) = P4 4(w). Let z be a letter,
we have:

Par g(zw) = Y ¢'(q,@,7) Par r(w)
reQ
= Z A7r#(q,2,Q)Pa,r(w) where the A7 . satisfy the conditions of Def. 3,
reQ
0(q,7,Q) - [ DX, Pa, = Pag(xZ") - [£7' Pag] (w) = Paq(aw).
reQ

Then for any state ¢, P4,y = Par4. We remark that Py = quQ V(qQ)Par g =
> 4eq V' (@)Pa,g = Pa, which concludes the proof. O
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Fy € red(F,qs)
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Fig. 4. Two non isomorphic reduced PFAs of F.

We say that a PFA is saturated if it has a maximal number of transitions.
Definition 4. A PFA A is saturated if A is in sat(A).

Next proposition states a number of properties of the sat operator. Proofs are
omitted.

Proposition 4. If A and B are state-equivalent, then sat(4A) = sat(B). A
PFA A is saturated iff for any states r,s and any letter x we have P4, €
cov(z7 Py, L4a) = @(r,z,8) # 0 and Pa, € cov(Pa,La) = 1(r) # 0. Any
element B of sat(A) is saturated and moreover sat(A) = sat(B). Any two ele-
ments of sat(A) are isomorphic. If B is isomorphic to A and if A is saturated
then B is saturated.

Let A = (X,Q,¢,t,7) be a PFA and let A be theset of PFAs A' = (X, Q, ¢',/, T)
such that A’ is state equivalent to A. Define the relation < on A by:

B < Ciff ip(g) # 0= tc(g) # 0 and ¢5(q,7,9') # 0= pc(g,z,9") #0

for any states ¢,¢' and any letter z, where B = (X,Q,¢B,tB,7) and C =
<E,Q,¢C,Lc,7'>-

Proposition 5. (A/ ~,<) is a semi-upper lattice whose mazimal element is
sat(A).

Proof. Let B = (X,Q,¢B,tB,7),C = (X,Q,¢pc,tc,7) € A. Define the PFA
BvC = (X,Q,¢,,7) where for any states r,s and any letter x, we have
d(r) = (t(r) + tc(r)) /2 and ¢'(r,z,s) = (¢B(r, 2, 8) + pc(r,z,s)) /2. Check
that B < BV C, C < BV C and that for any D such that B < D and C < D,
we have BV C < D.

Now, it is clear from the definition of cov and from Prop. 4 that the elements
of sat(A) define a class which is the maximal element of (4/ ~, <). O
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Let A be a set of PFAs defined on the same alphabet and the same set
of states ) and let ¢ € Q. Define sat(A) = Uacasat(A) and red(A,q) =
Uacared(A,q).

Proposition 6. Let A =(X,Q,p,t,7) be a PFA and let q be a state of A. Let
B € sat(red(A,q)) and C € red(sat(A),q). Then B and C are isomorphic.

Proof. Let A' € sat(A) such that C € red(A',q). Let r,s be states of C' and
let = be a letter such that Py € cov(z™!Pc,, Lc). From Prop. 1, Py s €
cov(z7 Py, Lar). From Prop. 4, A’ is saturated and then pa/(r,z,s) # 0.
Therefore, pc(r,z,s) # 0. In a similar way, it can be shown that if Pc, €
cov(Pc, L) then to(s) # 0. From Prop. 4, C is saturated. Now, sat(B) = sat(C)
as B and C are state-equivalent ; C' € sat(B) as C' is saturated. Therefore C is
isomorphic to B from Prop. 5. |

Proposition 7. Let A be a saturated PFA and let ¢1 and g2 be two states from
A. Let B € red(red(A,q1),q2) and C € red(red(A,q2),q1). Then, B and C are
isomorphic.

Proof. From Prop. 1, B and C' are state-equivalent. Then, from Prop. 4, sat(B) =
sat(C). From Prop. 6, B and C are saturated. So, B € sat(C) and B and C are
isomorphic. O

Given a PFA, saturing and reducing it while it is possible provides an equivalent
PFA which is reduced, saturated and unique up to an isomorphism. However,
there exist non isomorphic reduced saturated equivalent PFAs (see Fig. 5).

G H
() i)
11— 1
2
1/2 1 1

Fig. 5. Two non isomorphic reduced saturated equivalent PFAs.

4 Canonical PRFA

The application of reduction or saturation to a PRFA always yields a PRFA.

Proposition 8. Let A be a PRFA and let q be a state of A. Then, all elements
of red(A, q) U sat(A) are PRFAs.

Proof. As reduction and saturation do not change the languages generated from
the states, every state will continue to generate a residual language.

Definition 5. Let P be a stochastic language, a residual language v 'P is
said to be composed if there exist residual languages uy P, ..., u; ' P such that
u P #u; P for anyi =1,...,k and such thatu *P € conv({u; ' P,... ,u,;lP}).
A residual language is prime if and only if it is not composed.
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Clearly, a stochastic language generated by a PRFA with n states has at most n
prime residual languages. The converse is false. Let A = ({a}, {q1,¢2}, ¥, ¢, T) be
aPFA such that «(q1) = u(g2) = 1/2,7(q1) = 1—a, 7(q1) = 1=, p(q1,a,q1) = @,
©(q2,a,q2) = B. The stochastic language P4 has only one prime residual lan-
guage and cannot be generated by a PRFA. We have P(a™) = w
If @« < B, e 'P, is the unique prime residual language and for any integer
n > 0, (a™) 1Py is composed of e 1P4 and (a"*1) ! P4. However, it can easily
be shown that a stochastic language whose set of prime residual languages is a
finite residual net is in Lprr . Furthermore, if P € Lprra and if P is the set
of its prime residual languages, every residual language of P is in conv(P).

Proposition 9. Let A = (X,Q,p,t,7) be a PRFA. Then, for any prime resid-
ual language u='P4 and any q € §(Qr,u), we have Pa, = u 1Py, where § is
the transition function of the support of A. If A is reduced, then there exists only
one state ¢ € Q such that Py, = u~' P4. Moreover, any Pa.q4 is a prime residual
language of Py4.

Proof. Let R = 6(Qr,u), there exist non negative real numbers (a,)rcg such
that u 1Py = ZreR 0Py . As u 1P, is prime and as A is a PRFA, there
must exist r € R such that u='Pq = P4,. Let S = {r € R|Pa, = u=' P4},
S=R\Sandleta=3, ga;. Ifa <1, wewouldhaveu™ Py =3 512 Pa,
which is impossible since each Pj4 , is a residual language of P4 and uw 1Py is
prime. Therefore, « =1 and S = §(Qr,u). If A is reduced, there cannot be two
distinct states of A which define the same stochastic language. Finally, as any
residual language is composed of prime residual languages, any P4 4 is a prime
residual language of P4 if A is reduced. |

As a corollary, it can be shown that the support of reduced PRFAs are exactly
RFSAs (X, Q, Qo, F, §) such that for every state ¢ € @, there exists u € X* such
that §(Qo,u) = {q}. So, not all RFSAs can be the support of a PRFA.

Proposition 10. Let P € Lprra, let P = {Py,..., P} be the set of all prime
residual languages of P. Let o ; and B; be non negative real numbers defined for
all1<i,j <k and z € X such that

—27'P = Zle of ;P; with Pj € cov (¢7'P;, P) = af; >0
- P= Ele BiP; with P; € cov (P,P) = ; > 0.
Let A = (X,P,p,1,7) be the PFA such that o(P;,z,P;) = of ;P;(z2X*),

uP;) = B; and 7(P;) = P;(e) for any 1 < i,j < k and any letter x. Then, A is
a reduced saturated PRFA which generates P.

Proof. First, we prove by induction that for any state P; of A, P4 p, = P;. We
have P4 p,(¢) = P;(e). Assume now that for any state P; and any word w of
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length <1, P4 p,(w) = P;(w). Let  be a letter, then we have:

k
Py p,(zw) :Z(p(Pz,x P;)Py,p; (w Za”P (zX*)Pj(w)
j=1
k
= Py(zX") Z Pi(zZ*)[z 1 P](w) = P;(zw).

Then for any state P;, Pa,p, = P;. We have

Py = ZﬂzPAP = Z&Pz p

i=1 i=1
so A generates P. Therefore, A is a PRFA. It is clear that A is reduced and
saturated as every p is a prime residual language. O

Let can(P) be the set of canonical PRFAs obtained by the last construction.
It is clear that any two elements of can(P) are isomorphic.

Theorem 1. Let P € Lprpa- All reduced PRFAs that generate P are state-
equivalent. All saturated reduced PRFAs that generate P are canonical PRFAs.

Proof. From Prop. 9, all reduced PRFAs that generate P are state-equivalent.
From Prop. 5 and 10, all saturated reduced PRFAs that generate P are in
can(P). O

Previous results have a geometrical interpretation: the (possibly infinite) set
of residual languages of a stochastic language generated by a PRFA is contained
in a polytope whose vertices are its prime residual languages.

5 Decision and complexity problems.

Deciding whether two NFAs are equivalent is a PSPACE-complete problem
but deciding whether two PFAs are equivalent can be done within polynomial
time [15]. Given a PFA A = (¥,Q,¢,t,T), there exist states gi,...,qr s.t.
any P4, can be uniquely written as a linear combination of P4 g, ,..., Pa,q,
ie. Pay = Y8, i P4, where the a! need not be non negative. Also, by
adapting results from [16] and [15], it can easily be shown that there exists
a polynomial algorithm which computes such states ¢; and coefficients afl from
a given PFA. So, given a PFA A = (¥, Q,¢,1,7), ¢ € @,z € ¥ and R C @,
it can be decided within polynomial time whether P4 or x_lPA,q belongs to
conv ({Pa, | v € R}). Moreover, Sy = {r € Q | Pa,» € cov(P4,L4)} and S, , =
{r € Q| Pa, € cov(z™' Py, L4)} can also be computed within polynomial time.
Finally, using linear programming techniques, strictly positive coefficients such
that
' Pag= Y af Payand Px= Y B, Pa,
TE€Sq,2 r€S]

can be found within polynomial time. So,
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Theorem 2. Given a PFA A,

— it is decidable in polynomial time whether A is reduced,

— a reduction of A can be computed within polynomial time,
— it is decidable in polynomial time whether A is saturated,
— a saturation of A can be computed within polynomial time.

Note that these results contrast dramatically with the situation on NFAs. It
has been shown in [14] that deciding whether an NFA is saturated or deciding
whether it can be reduced are PSPACE-complete problems.

Proposition 11. It is decidable whether a given reduced PFA is a PRFA.

Proof. Let A = (¥,Q,p,t,7) be a reduced PFA. A is a PRFA iff its support
is an RFSA (¥, Q, Qo, F, §) such that for every state ¢ € @, there exists some
u € X* such that §(Qo, u) = {q}. This last property can be decided, for example
by using the subset construction to determinize A.

Proposition 12. It is decidable whether a given PFA is equivalent to some
PRFA having at most n states.

Proof. Each state of a PRFA A having n states is uniquely reachable by a word
whose length is < 2". So, P4 € Lprra iff for any word v € X2?" and any letter
z, (uz) "1 P4 € conv({v 'Palv € £<2"}) and this last property is decidable. O

We do not know whether the following problems are decidable:

— given a PFA A, Py € Lppra?
— given a PFA A, P4 € Lprra?
— given a PRFA A, Pjs € Lppra?

The first problem is decidable when A is non ambiguous, i.e. if each word rec-
ognized by the support of A has only one derivation [17,18]. The second prob-
lem has an interesting geometrical formulation as for any P € Lpra, the set
{u~1P|u € X*} can be naturally embedded into a vector space of finite dimen-
sion: P4 € Lprra iff the polyhedron conv({u='Palu € X<"}) is stationary
from some index n.

6 Conclusion

Residual languages are natural components of stochastic languages. This notion
proves to be as useful as it is in classical language theory. In particular, it allows
to define interesting subclasses of PFA and of regular stochastic languages. The
fact that languages generated by PRFA have a unique canonical PRFA repre-
sentation which can be computed within polynomial time from any equivalent
PRFA is promising and should allow to design specific inference algorithms: this
is a work in progress. Deciding whether a regular stochastic language can be
generated by a PDFA is a classical difficult open problem. Deciding whether
such a language can be generated by a PRFA seems to be at least as difficult as
the previous problem.
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