
Using Pseudo-Stochastic Rational Languages in
Probabilistic Grammatical Inference

Amaury Habrard, François Denis, and Yann Esposito

Laboratoire d’Informatique Fondamentale de Marseille (L.I.F.) UMR CNRS 6166
{habrard,fdenis,esposito}@cmi.univ-mrs.fr

Abstract. In probabilistic grammatical inference, a usual goal is to infer a good
approximation of an unknown distributionP called astochastic language. The
estimate ofP stands in some class of probabilistic models such as probabilistic
automata (PA). In this paper, we focus on probabilistic models based on mul-
tiplicity automata (MA). The stochastic languages generated by MA are called
rational stochastic languages; they strictly include stochastic languages gener-
ated by PA; they also admit a very concise canonical representation. Despite the
fact that this class is not recursively enumerable, it is efficiently identifiable in
the limit by using the algorithm DEES, introduced by the authors in a previous
paper. However, the identification is not proper and before the convergence of
the algorithm, DEES can produce MA that do not define stochastic languages.
Nevertheless, it is possible to use these MA to define stochastic languages. We
show that they belong to a broader class of rational series, that we callpseudo-
stochastic rational languages. The aim of this paper is twofold. First we provide
a theoretical study of pseudo-stochastic rational languages, the languages output
by DEES, showing for example that this class is decidable within polynomial
time. Second, we have carried out a lot of experiments in order to compare DEES
to classical inference algorithms such as ALERGIA and MDI. They show that
DEES outperforms them in most cases.
Keywords. pseudo-stochastic rational languages, multiplicity automata, proba-
bilistic grammatical inference.

1 Introduction

In probabilistic grammatical inference, we often considerstochastic languages which
define distributions overΣ∗, the set of all the possible words over an alphabetΣ. In
general, we consider an unknown distributionP and the goal is to find a good approxi-
mation given a finite sample of words independently drawn from P .

The class of probabilistic automata (PA) is often used for modeling such distribu-
tions. This class has the same expressiveness as Hidden Markov Models and is identi-
fiable in the limit [4]. However, there exists no efficient algorithm for identifying PA.
This can be explained by the fact that there exists no canonical representation of these
automata which makes it difficult to correctly identify the structure of the target. One so-
lution is to focus on subclasses of PA such as probabilistic deterministic automata [3,9]
but with an important lack of expressiveness. Another solution consists in considering
the class of multiplicity automata (MA). These models admita canonical representa-
tion which offers good opportunities from a machine learning point of view. MA define
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functions that compute rational series with values inR [5]. MA are a strict generaliza-
tion of PA and the stochastic languages generated by PA are special cases of rational
stochastic languages. Let us denote bySrat

K (Σ) the class of rational stochastic lan-
guages computed by MA with parameters inK whereK ∈ {Q, Q+, R, R+}. With
K = Q+ or K = R+, Srat

K (Σ) is exactly the class of stochastic languages generated
by PA with parameters inK. But, whenK = Q or K = R, we obtain strictly greater
classes. This provides several advantages: Elements ofSrat

K (Σ) have a minimal normal
representation, thus elements ofSrat

K+(Σ) may have significantly smaller representation
in Srat

K (Σ); parameters of these minimal representations are directlyrelated to prob-
abilities of some natural events of the formuΣ∗, which can be efficiently estimated
from stochastic samples; lastly whenK is a field, rational series overK form a vector
space and efficient linear algebra techniques can be used to deal with rational stochastic
languages.

However, the classSrat
Q (Σ) presents a serious drawback: There exists no recur-

sively enumerable subset class of MA which exactly generates it [4]. As a conse-
quence, no proper identification algorithm can exist: indeed, applying a proper iden-
tification algorithm to an enumeration of samples ofΣ∗ would provide an enumera-
tion of the class of rational stochastic languages overQ. In spite of this result, there
exists an efficient algorithm, DEES, which is able to identify Srat

K (Σ) in the limit.
But before reaching the target, DEES can produce MA that do not define stochastic
languages. However, it has been shown in [6] that with probability one, for any ra-
tional stochastic languagep, if DEES is given as input a sufficiently large sampleS
drawn according top, DEES outputs a rational series such that

∑

u∈Σ∗ r(u) converges
absolutely to 1. Moreover,

∑

u∈Σ∗ |p(u) − r(u)| converges to 0 as the size ofS in-
creases. We show that these MA belong to a broader class of rational series, that we
call pseudo-stochastic rational languages. A pseudo-stochastic rational languager has
the property thatr(uΣ∗) = limn→∞r(uΣ≤n) is defined for any wordu and that
r(Σ∗) = 1. A stochastic languagepr can be associated withr in such a way that
∑

u∈Σ∗ |pr(u) − r(u)| = 2
∑

r(u)<0 |r(u)| when the sum
∑

u∈Σ∗ r(u) is absolutely
convergent. As a first consequence,pr = r whenr is a stochastic language. As a second
consequence, for any rational stochastic languagep, if DEES is given as input increas-
ing samples drawn according top, DEES outputs pseudo-stochastic rational languages
r such that

∑

u∈Σ∗ |p(u) − pr(u)| converges to 0 as the size ofS increases.

The aim of this paper is twofold: To provide a theoretical study of the class of
pseudo-stochastic rational languages and a series of experiments in order to compare
the performance of DEES to two classical inference algorithms: ALERGIA [3] and
MDI [9]. We show that the class of pseudo-stochastic rational languages is decidable
within polynomial time. We provide an algorithm that can be used to computepr(u)
from any MA that computesr. We also show how it is possible to simulatepr using such
an automaton. We show that there exist pseudo-stochastic rational languagesr such that
pr is not rational. Finally, we show that it is undecidable whether two pseudo-stochastic
rational languages define the same stochastic language. We have carried out a lot of
experiments which show that DEES outperforms ALERGIA and MDI in most cases.
These results were expected since ALERGIA and MDI have not the same theoretical
expressiveness and since DEES aims at producing a minimal representation of the target
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in the set of MA, which can be significantly smaller than the smaller equivalent PDA
(if it exists).

The paper is organized as follows. In section 2, we introducesome background
about multiplicity automata, rational series and stochastic languages and present the al-
gorithm DEES. Section 3 deals with our study of pseudo-rational stochastic languages.
Our experiments are detailed in Section 4.

2 Definitions and notations

2.1 Rational series, multiplicity automata and stochasticlanguages

Let Σ∗ be the set of words on the finite alphabetΣ. A language is a subset ofΣ∗. The
empty word is denoted byε and the length of a wordu is denoted by|u|. For any integer
k, letΣk = {u ∈ Σ∗ : |u| = k} andΣ≤k = {u ∈ Σ∗ : |u| ≤ k}. We denote by< the
length-lexicographic order onΣ∗ and byMinL the minimal element of a non empty
languageL according to this order. A subsetS of Σ∗ is prefix-closedif for any u, v ∈
Σ∗, uv ∈ S ⇒ u ∈ S. For anyS ⊆ Σ∗, let pref(S) = {u ∈ Σ∗ : ∃v ∈ Σ∗, uv ∈ S}
andfact(S) = {v ∈ Σ∗ : ∃u, w ∈ Σ∗, uvw ∈ S}.

A formal power seriesis a mappingr of Σ∗ into R. The set of all formal power
series is denoted byR〈〈Σ〉〉. It is a vector space. For any seriesr and any wordu, let us
denote byu̇r the series defined bẏur(w) = r(uw) for every wordw. Let us denote by
supp(r) thesupportof r, i.e. the set{w ∈ Σ∗ : r(w) 6= 0}. A stochastic languageis a
formal seriesp which takes its values inR+ and such that

∑

w∈Σ∗ p(w) = 1. The set
of all stochastic languages overΣ is denoted byS(Σ). For any languageL ⊆ Σ∗ and
anyp ∈ S(Σ), let us denote

∑

w∈L p(w) by p(L). For anyp ∈ S(Σ) andu ∈ Σ such
thatp(uΣ∗) 6= 0, the residual languageof p wrt u is the stochastic language defined
by u−1p by u−1p(w) = p(uw)

p(uΣ∗) . We denote byres(p) the set{u ∈ Σ∗ : p(uΣ∗) 6= 0}

and byRes(p) the set{u−1p : u ∈ res(p)}.
Let S be a sample overΣ∗, i.e. a multiset composed of words overΣ∗. We denote

by pS the empirical distribution overΣ∗ associated withS. Let S be an infinite sam-
ple composed of words independently drawn according to a stochastic languagep. We
denote bySn the sequence composed of then first words ofS.

We introduce now the notion of multiplicity automata (MA). LetK ∈ {R, Q, R+, Q+}.
A K-multiplicity automaton (MA)is a 5-tuple〈Σ, Q, ϕ, ι, τ〉 whereQ is a finite set of
states,ϕ : Q × Σ × Q → K is the transition function,ι : Q → K is the initialization
function,τ : Q → K is the termination function. We extend the transition function
ϕ to Q × Σ∗ × Q by ϕ(q, wx, r) =

∑

s∈Q ϕ(q, w, s) ϕ(s, x, r) andϕ(q, ε, r) = 1 if
q = r and0 otherwise, for anyq, r ∈ Q, x ∈ Σ andw ∈ Σ∗. For any finite subset
L ⊂ Σ∗ and anyR ⊆ Q, defineϕ(q, L, R) =

∑

w∈L,r∈R ϕ(q, w, r). We denote by
QI = {q ∈ Q|ι(q) 6= 0} the set ofinitial statesand byQT = {q ∈ Q|τ(q) 6= 0} the set
of terminal states. A stateq ∈ Q is accessible(resp.co-accessible) if there existsq0 ∈
QI (resp.qt ∈ QT ) andu ∈ Σ∗ such thatϕ(q0, u, q) 6= 0 (resp.ϕ(q, u, qt) 6= 0). An
MA is trimmedif all its states are accessible and co-accessible. From now, we only con-
sider trimmed MA. Thesupportof an MA A = 〈Σ, Q, ϕ, ι, τ〉 is theNon-deterministic
Finite Automaton (NFA)〈Σ, Q, QI , QT , δ〉 whereδ(q, x) = {q′ ∈ Q|ϕ(q, x, q′) 6= 0}.
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Thespectral radiusof a square matrixM if the maximum magnitude of its eigen-
values. LetA = 〈Σ, Q = {q1, . . . , qn}, ι, ϕ, τ〉 be an MA. Let us denote byρ(A) be
the spectral radius of the square matrix[ϕ(qi, Σ, qj)]1≤i,j≤n (ρ(A) does not depends
on the order of the states). Ifρ(A) < 1 then each sequencerA,q(Σ

≤n) converges to a
numbersq and hence,r(Σ≤n) converges too [6]. Let us denote byr(Σ∗) the limit of
r(Σ≤n) when it exists. The numberssq are the unique solutions of the following linear
system of equations (and therefore are computable within polynomial time):

sq = rA,q +
∑

q′∈Q ϕ(q, Σ, q′)sq′ for q ∈ Q.
It is decidable within polynomial time whetherρ(A) < 1 [2,7].

A Probabilistic Automaton (PA)is a trimmed MA〈Σ, Q, ϕ, ι, τ〉 s.t.ι, ϕ andτ take
their values in[0, 1], s.t.

∑

q∈Q ι(q) = 1 and for any stateq, τ(q) + ϕ(q, Σ, Q) = 1.
A Probabilistic Deterministic Automaton (PDA)is aPAwhose support is deterministic.
It can be shown that Probabilistic Automata generate stochastic languages. Let us de-
note bySPA

K (Σ) (resp.SPDA
K (Σ)) the class of all stochastic languages which can be

computed by aPA (resp. aPDA).
For any MAA, letrA be the series defined byrA(w) =

∑

q,r∈Q ι(q) ϕ(q, w, r)τ(r).
For anyq ∈ Q, we also define the seriesrA,q by rA,q(w) =

∑

r∈Q ϕ(q, w, r)τ(r). An
MA A is reducedif the set{rA,q|q ∈ Q} is linearly independent in the vector space
R〈〈Σ〉〉. An MA A is prefix-closedif (i) its set of statesQ is a prefix-closed subset of
Σ∗, (ii) QI = {ε} and (iii) ∀u ∈ Q, δ(ε, u) = {u} whereδ is the transition function in
the support ofA.

Rational series have several characterization ([1,8]). Here, we shall say that a for-
mal power series overΣ is K-rational iff there exists aK-multiplicity automatonA
such thatr = rA, whereK ∈ {R, R+, Q, Q+}. Let us denote byKrat〈〈Σ〉〉 the
set of K-rational series overΣ and bySrat

K (Σ) = Krat〈〈Σ〉〉 ∩ S(Σ), the set of
rational stochastic languagesover K. It can be shown that a seriesr is R-rational
iff the set{u̇r|u ∈ Σ∗} spans a finite dimensional vector subspace ofR〈〈Σ〉〉. As
a corollary, a stochastic languagep is R-rational iff the setRes(p) spans a finite di-
mensional vector subspace[Res(p)] of R〈〈Σ〉〉. Rational stochastic languages have
been studied in [5] from a language theoretical point of view. It is worth noting that
SPDA

R (Σ) ( SPA
R (Σ) = Srat

R+ (Σ) ( Srat
R (Σ). From now on, a rational stochastic

language will always denote anR-rational stochastic language.
Rational stochastic languages have a serious drawback. There exists no recursively

enumerable subset of multiplicity automata capable to generate them [4,5]. As a conse-
quence, it is undecidable whether a given MA computes a stochastic language.

Every rational language is the support of a rational series but the converse is false:
there exists rational series whose supports are not rational. For example, it can be shown
that the complementary set of{anbn|n ∈ N} in {a, b}∗ is the support of a rational
series. However, a variant of Pumping Lemma holds for languages which are support
of rational series. LetL be such a language. There exists an integerN such that for any
wordw = uv ∈ L satisfying|v| ≥ N , there existsv1, v2, v3 such thatv = v1v2v3 and
L ∩ uv1v

∗
2v3 is infinite [1].

Rational stochastic languages admit a canonical representation by reduced prefix-
closed MA. Letp be a rational stochastic language and letQp be the smallest ba-
sis of [Res(p)] (for the order induced by< on the finite subsets ofΣ∗). Let A =
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〈Σ, Qp, ϕ, ι, τ〉 be the MA defined by:(i) ι(ε) = 1, ι(u) = 0 otherwise;τ(u) =
u−1p(ε), (ii) ϕ(u, x, ux) = u−1p(xΣ∗) if u, ux ∈ Qp andx ∈ Σ, (iii) ϕ(u, x, v) =
αvu−1p(xΣ∗) if x ∈ Σ, ux ∈ (QpΣ \Qp)∩ res(p) and(ux)−1p =

∑

v∈Qp
αvv−1p.

It can be shown thatA is a reduced prefix-closed MA which computesp and such that
ρ(A) < 1. A is called thecanonical representationof p. Note that the parameters of
A correspond to natural components of the residual ofp and can be estimated by using
samples ofp.

2.2 Inference of rational stochastic languages

The algorithm DEES [6] is able to identify rational stochastic languages: with prob-
ability one, for every rational stochastic languagep and every infinite sampleS of p,
there exists an integerN such that for everyn ≥ N , DEES(Sn) outputs the canonical
representationA of p. Before its presentation, we introduce informally the basic idea
of the algorithm. First, the goal is to find the structure of the automaton,i.e. the set of
statesQp smallest basis of[Res(P )]. The inference proceeds as follows: the algorithm
begins by building a unique state which corresponds to the residualε−1pS . Each state
of the automaton corresponds to some residualu−1ps whereu is the prefix of some
examples inS. After having built a state corresponding tou−1ps, for any letterx, the
algorithm studies the possibility of adding a new state corresponding to(ux)−1ps or of
creating transitions labeled byx that lead to the states already built in the automaton.
A new state will be added to the automaton if the residual language corresponding to
(ux)−1ps cannot be approximated as a linear combination of the residual languages
corresponding the states already built.

The pseudo-code of the algorithm is presented in Algorithm 1. In order to find a
linear combination, DEES uses the following set of inequalities whereS is a non empty
finite sample ofΣ∗, Q a prefix-closed subset ofpref(S), v ∈ pref(S) \Q, andε > 0:

I(Q,v, S, ε) = {|v−1PS(wΣ∗)−P

u∈Q Xuu−1PS(wΣ∗)| ≤ ε|w ∈ fact(S)} ∪ {Pu∈Q Xu = 1}.

DEES runs in polynomial time in the size ofS and identifies in the limit the structure
of the canonical representationA of the targetp. Once the correct structure ofA is
found, the algorithm computes estimatesαS of each parameterα of A such that|α −
αS | = O(|S|−1/3). The output automatonA computes a rational seriesrA such that
∑

w∈Σ∗ rA(w) converges absolutely to 1. Moreover, it can be shown thatrA converges
to the targetp under theD1 distance (also called theL1 norm), stronger than distance
D2 or D∞:

∑

w∈Σ∗ |rA(w) − p(w)| tends to 0 when the size ofS tends to∞. If
the parameters ofA are rational numbers, a variant of DEES can identify exactlythe
target [6].
We give now a simple example that illustrates DEES. Let us consider a sampleS =
{ε, a, aa, aaa} such that|ε| = 10, |a| = |aa| = 20, |aaa| = 10. We have the following
values for the empirical distribution:PS(ε) = PS(aaa) = PS(aaaΣ∗) = 1

6 , PS(a) =
PS(aa) = 1

3 , PS(aΣ∗) = 5
6 , PS(aaΣ∗) = 1

2 andPS(aaaaΣ∗) = 0, ε = 1

(60)
1
3

≡

0.255. With the sampleS, DEES will infer a multiplicity automaton in three steps:

1. We begin by constructing a state forε (Figure 1(a)).
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Input : a sampleS

Output : a prefix-closed reduced MAA = 〈Σ, Q, ϕ, ι, τ 〉
Q← {ε}; ι(ε)← 1 ; τ (ε)← PS(ε);
F ← Σ ∩ pref(S) /*F is the frontier set*/;
while F 6= ∅ do

v ←MinF s.t.v = u.x whereu ∈ Σ∗ andx ∈ Σ;
F ← F \ {v};
if I(Q,v, S, |S|−1/3) has no solutionthen

Q← Q ∪ {v}; ι(v)← 0; τ (v)← PS(v)/PS(vΣ∗);
ϕ(u, x, v)← PS(vΣ∗)/PS(uΣ∗); F ← F ∪ {vx ∈ res(PS)|x ∈ Σ}};

else
let (αw)w∈Q be a solution ofI(Q,v, S, |S|−1/3);
foreachw ∈ Q do ϕ(u, x, w)← αwPS(vΣ∗)/PS(uΣ∗);

Algorithm 1: Algorithm DEES.

ε

1
6

(a) Initialisation withε.

ε a

1
6

2
5

(b) Creation of a new state.

ε a

1
6

a, 5
6

2
5

a,− 3
10

a, 9
10

(c) Final automaton.
Fig. 1. Illustration of the different steps of algorithm DEES.

2. We examinePS(vΣ∗) with v = εa to decide if we need to add a new state for
the stringa. We obtain the following system which has in fact no solutionand we
create a new state as shown in Figure 1(b).

n˛

˛

˛

PS(vaΣ∗)
PS(vΣ∗)

− PS(aΣ∗)
PS(Σ∗)

∗Xε

˛

˛

˛
≤ b ,

˛

˛

˛

PS(vaaΣ∗)
PS(vΣ∗)

− PS(aaΣ∗)
PS(Σ∗)

∗Xε

˛

˛

˛
≤ b,

˛

˛

˛

PS(vaaaΣ∗)
PS(vΣ∗)

− PS(aaaΣ∗)
PS(Σ∗)

∗Xε

˛

˛

˛ ≤ b, Xε = 1
o

3. We examinePS(vΣ∗) with v = aa to decide if we need to create a new state for
the stringaa. We obtain the system below. It is easy to see that this systemadmits
at least one solutionXε = − 1

2 andXa = 3
2 . Then, we add two transitions to the

automaton and we obtain the automaton of Figure 1(c) and the algorithm halts.
n˛

˛

˛

PS(vaΣ∗)
PS(vΣ∗)

− PS(aΣ∗)
PS(Σ∗)

Xε − PS(aaΣ∗)
PS(aΣ∗)

Xa

˛

˛

˛
≤ b,

˛

˛

˛

PS(vaaΣ∗)
PS(vΣ∗)

− PS(aaΣ∗)
PS(Σ∗)

Xε − PS(aaΣ∗)
PS(aΣ∗)

Xa

˛

˛

˛
≤ b,

˛

˛

˛

PS(vaaaΣ∗)
PS(vΣ∗)

− PS(aaaΣ∗)
PS(Σ∗)

Xε − PS(aaaΣ∗)
PS(aΣ∗)

Xa

˛

˛

˛
≤ b, Xε + Xa = 1

o

Since no recursively enumerable subset of MA is capable to generate the set of
rational stochastic languages, no identification algorithm can be proper. This remark
applies to DEES. There is no guarantee at any step that the automatonA output by
DEES computes a stochastic language. However, the rationalseriesr computed by
the MA output by DEES can be used to compute a stochastic languagepr that also
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converges to the target [6]. Moreover, they have several nice properties which make
them close to stochastic languages: We call them pseudo-stochastic rational languages
and we study their properties in the next Section.

3 Pseudo-stochastic rational languages

The canonical representationA of a rational stochastic language satisfiesρ(A) < 1 and
∑

w∈Σ∗ rA(w) = 1. We use this characteristic to define the notion of pseudo-stochastic
rational language.

Definition 1. We say that a rational seriesr is a pseudo-stochastic languageif there
exists an MAA which computesr and such thatρ(A) < 1 and if r(Σ∗) = 1.

Note that the conditionρ(A) < 1 implies thatr(Σ∗) is defined without ambiguity. A
rational stochastic language is a pseudo-stochastic rational language but the converse is
false.

Example. Let A = 〈Σ, {q0}, ϕ, ι, τ〉 defined byΣ = {a, b}, ι(q0) = τ(q0) =
1, ϕ(q0, a, q0) = 1 andϕ(q0, b, q0) = −1. We haverA(u) = (−1)|u|b . Check that
ρ(A) = 0 andrA(uΣ∗) = (−1)|u|b for every wordu. Hence,rA is a pseudo stochastic
language.

As indicated in the previous section, any canonical representationA of a rational
stochastic language satisfiesρ(A) < 1. In fact, the next Lemma shows that any reduced
representationA of a pseudo-stochastic language satisfiesρ(A) < 1.

Lemma 1. Let A be a reduced representation of a pseudo-stochastic language. Then,
ρ(A) < 1.

Proof. The proof is detailed in Annex 6.1.

Proposition 1. It is decidable within polynomial time whether a given MA computes a
pseudo-stochastic language.

Proof. Given an MA B, compute a reduced representationA of B, check whether
ρ(A) < 1 and then, computerA(Σ∗). ut

It has been shown in [6] that a stochastic languagepr can be associated with a
pseudo-stochastic rational languager: the idea is to prune inΣ∗ all subsetsuΣ∗ such
thatr(uΣ∗) ≤ 0 and to normalize in order to obtain a stochastic language. Let N be
the smallest prefix-closed subset ofΣ∗ satisfying

ε ∈ N and∀u ∈ N, x ∈ Σ, ux ∈ N iff r(uxΣ∗) > 0.

For everyu ∈ Σ∗\N , definepr(u) = 0. For everyu ∈ N , letλu = Max(r(u), 0)+
∑

x∈Σ Max(r(uxΣ∗), 0). Then, definepr(u) = Max(r(u), 0)/λu. It can be shown
(see [6]) thatr(u) ≤ 0 ⇒ pr(u) = 0 andr(u) ≥ 0 ⇒ r(u) ≥ pr(u).
The difference betweenr and pr is simple to express when the sum

∑

u∈Σ∗ r(u)
converges absolutely. LetNr =

∑

r(u)≤0 |r(u)|. We have
∑

w∈Σ∗ |r(u) − pr(u)| =

Nr +
∑

r(u)>0(r(u) − pr(u)) = 2Nr +
∑

u∈Σ∗(r(u) − pr(u)) = 2Nr. Note that
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Input : MA A = 〈Σ, Q = {q1, . . . , qn}, ϕ, ι, τ 〉 s.t.ρ(A) < 1 andrA(Σ∗) = 1
a wordu

Output : prA
(u), prA

(uΣ∗)

for i = 1, . . . , n /* this step is polynomial inn and is done once*/do
si ← rA,qi

(Σ∗); ei ← ι(qi);

w← ε; λ← 1 /* λ is equal toprA
(wΣ∗)*/ ;

repeat
µ←Pn

i=1 eiτ (qi); S ← {(w, Max(µ, 0))};
for x ∈ Σ do

µ←Pn
i,j=1 eiϕ(qi, x, qj)sj ; S ← S ∪ {(wx, Max(µ, 0))};

σ ←P

(v,µ)∈S µ; S ← {(x, µ/σ)|(x, µ) ∈ S} /*normalization*/ ;
if w = u then prA

(u)← λµ /*where(u, µ) ∈ S andλ = prA
(uΣ∗)*/;

else
Let x ∈ Σ s.t.wx is a prefix ofu and letµ s.t.(wx, µ) ∈ S;
w ← wx; λ← λµ; for i = 1, . . . , n do ei ←

Pn
j=1 ejϕ(qj , x, qi) ;

end
until w = u;

Algorithm 2: Algorithm computingpr.

whenr is a stochastic language,
∑

u∈Σ∗ r(u) converges absolutely andNr = 0. As a
consequence, in that case,pr = r. We give in Algorithm 2 an algorithm that computes
pr(u) andpr(uΣ∗) for any wordu from any MA that computesr. This algorithm is
linear in the length of the input. It can be slightly modified to generate a word drawn
according topr (see Annex 6.3).

3
2

q1 q2− 1
2

τ1

a, ρα ; b, ρ

τ2

a, ρ ; b, ρβ

Fig. 2. An example of pseudo-
stochastic rational languages
which are not rational.

The stochastic languagespr associated with pseudo-
stochastic rational languagesr can be not rational.

Proposition 2. There exists pseudo-stochastic ra-
tional languagesr such thatpr is not rational.

Proof. Suppose that the parameters of the automaton
A described on Figure 2 satisfyρ(α + 1) + τ1 = 1

andρ(β + 1) + τ2 = 1 with α > β > 1. Then the seriesrq1
andrq2

are rational
stochastic languages and therefore,rA = 3rq1

/2 − rq2
/2 is a rational series which

satisfies
∑

u∈Σ∗ |rA(u)| ≤ 2 and
∑

u∈Σ∗ rA(u) = 1.

Let us show thatprA
is not rational. For anyu ∈ Σ∗, rA(u) = ρ|u|

2 (3α|u|aτ1−β|u|bτ2).
For any integern, there exists an integermn such that for any integeri, rA(anbi) > 0
iff i ≤ mn. Moreover, it is clear thatmn tends to infinity withm. Suppose now thatprA

is rational and letL be its support. From the Pumping Lemma, there exists an integerN
such that for any wordw = uv ∈ L satisfying|v| ≥ N , there existsv1, v2, v3 such that
v = v1v2v3 andL∩uv1v

∗
2v3 is infinite. Letn be such thatmn ≥ N and letu = an and

v = bmn . Sincew = uv ∈ L, L ∩ anb∗ should be infinite, which is is false. Therefore,
L is not the support of a rational language. ut
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Different rational series may yield the same pseudo-rational stochastic language. Is
it decidable whether two pseudo-stochastic rational series define the same stochastic
language? Unfortunately, the answer is no. The proof relieson the following result: it is
undecidable whether a multiplicity automatonA overΣ satisfiesrA(u) ≤ 0 for every
u ∈ Σ∗ [8]. It is easy to show that this result still holds for the setof MA A which
satisfy|rA(u)| ≤ λ|u|, for anyλ > 0.

Proposition 3. It is undecidable whether two rational series define the samestochastic
language.

Proof. The proof is detailed in Annex 6.2.

4 Experiments

In this section, we present a set of experiments allowing us to study the performance
of the algorithm DEES for learning good stochastic languagemodels. Hence, we will
study the behavior of DEES with samples of distributions generated from PDA, PA
and non rational stochastic language. We decide to compare DEES to the most well
known probabilistic grammatical inference approaches: The algorithmsAlergia [3] and
MDI [9] that are able to identify PDAs. These algorithms can be tuned by a parameter,
in the experiments we choose the best parameter which gives the best result on all the
samples, but we didn’t change the parameter according to thesize of the sample in order
to take into account the impact of the sample sizes.

In our experiments, we use two performance criteria. We measure the size of the
inferred models by the number of states. Moreover, to evaluate the quality of the au-
tomata, we use theD1 norm1 between two modelsA andA′ defined by :

D1(A, A′) =
∑

u∈Σ∗ |PA(u) − PA′(u)| .
D1 norm is the strongest distance after Kullback Leibler. In practice, we use an approx-
imation by considering a subset ofΣ∗ generated byA (A will be the target for us).

We carried out a first series of experiment where the target automaton can be repre-
sented by a PDA. We consider a stochastic language defined by the automaton on Fig-
ure 3. This stochastic language can be represented by a multiplicity automaton of three
states and by an equivalent minimal PDA of twelve states [6] (Alergia and MDI can
then identify this automaton). To compare the performancesof the three algorithms, we
used the following experimental set up. From the target automaton, we generate sam-
ples from size 100 to 10000. Then, for each sample we learn an automaton with the
three algorithms and compute the normD1 between them and the target. We repeat this
experimental setup 10 times and give the average results. Figure 4 reports the results
obtained. If we consider the size of the learned models, DEESfinds quickly the target
automaton, while MDI only begins to tend to the target PDA after 10000 examples.
The automata produced by Alergia are far from this target. This behavior can be ex-
plained by the fact that these two algorithms need significantly longer examples to find

1 Note that we can’t use the Kullback-Leibler measure becauseit is not robust with null proba-
bility strings which implies to smooth the learned models, and also because automata produced
by DEES do not always define stochastic language,i.e.some strings may have a negative value.
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q1

λ0 1
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λ1 1
q3

λ2 1

a, cos α
2 a, − sin α
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a, sin α
2

a, cos α
2

a, 1

2

Fig. 3. Aα define stochastic language which can be represented by a PA with at least2n states
whenα = π

n
. With λ0 = λ2 = 1 andλ1 = 0, the MA Aπ/6 defines a stochastic languageP

whose prefixed reduced representation is the MAB (with approximate values on transitions). In
fact,P can be computed by a PDA and the smallest PA computing it isC.
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Fig. 4.Results obtained with the prefix reduced multiplicity automaton of three states of Figure 3
admitting a representation with a PDA of twelve states.

the correct target and thus larger samples, this is also amplified because there are more
parameters to estimate. In practise we noticed that the correct structure can be found af-
ter more than 100000 examples. If we look at the distanceD1, DEES outperforms MDI
and Alergia (which have the same behavior) and begins to converge after 500 examples.

We carried out other series of experiments for evaluating DEES when the target
belongs to the class of PA. First, we consider the simple automaton of Figure 5 which
defines a stochastic language that can be represented by a PA with parameters inR+. We
follow the same experimental setup as in the first experiment, the results are reported
on Figure 6. According to our 2 performance criteria, DEES outperforms again Alergia
and MDI. In fact, the target can not be modeled correctly by Alergia and MDI because
it can not be represented by a PDA. This explains why these algorithms can’t find a
good model. For them, the best answer is to produce a unigram model. Alergia even
diverge at a given step (this behavior is due to its fusion criterion that becomes more
restrictive with the increasing of the learning set) and MDIreturns always the unigram.
DEES finds the correct structure quickly and begins to converge after 1000 examples.
This behavior confirms the fact DEES can produce better models with small samples
because it constructs small representations. On the other hand, Alergia and MDI seem
to need a huge number of examples to find a good approximation of the target, even
when the target is relatively small.
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Fig. 5. AutomatonA is a PA with non rational parameters inR+ (α = (
√

5 + 1)/2). A can be
represented by an MAB with rational parameters inQ [5].
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Fig. 6. Results obtained with the target automaton of Figure 5 admitting a representation in the
class PA with non rational parameters.

We made another experiment in the class of PA. We study the behavior of DEES
when the learning samples are generated from different targets randomly generated. For
this experiment, we take an alphabet of three letters and we generate randomly some
PA with a number of states from 2 to 25. The PA are generated in order to have a prefix
representation which guarantees that all the states are reachable. The rest of the tran-
sitions and the values of the parameters are chosen randomly. Then, for each target,
we generate 5 samples of size 300 times the number of states ofthe target. We made
this choice because we think that for small targets the samples may be sufficient to find
a good approximation, while for bigger targets there is a clear lack of examples. This
last point allows us to see the behaviors of the algorithms with small amounts of data.
We learn an automaton from each sample and compare it to the corresponding target.
Note that we didn’t use MDI in this experiment because this algorithm is extremely
hard to tune, which implies an important cost in time for finding a good parameter. The
parameter of Alergia is fixed to a reasonable value kept for all the experiment. Results
for Alergia and DEES are reported on Figure 7. We also add the empirical distance of
the samples to the target automaton. If you consider theD1 norm, the performances
of Alergia depend highly on the empirical distribution. Alergia infers models close, or
better, than those produced by DEES only when the empirical distribution is already
very good, thus when it is not necessary to learn. Moreover, Alergia has a greater vari-
ance which implies a weak robustness. On the other hand, DEESis always able to learn
significantly small models almost always better, even with small samples.
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Fig. 7. Results obtained from a set of PA generated randomly.
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Fig. 8. Results obtained with samples generated from a non rationalstochastic language.

Finally, we carried out a last experiment where the objective is to study the behavior
of the three algorithms with samples generated from a non rational stochastic language.
We consider, as a target, the stochastic language generatedusing thepr algorithm from
the automaton of Figure 2 (note that this automaton admits a prefix reduced represen-
tation of 2 states). We tookρ = 3/10, α = 3/2 andβ = 5/4. We follow the same
experimental setup than the first experiment. Since we use rational representations, we
measure the distanceD1 from the automaton of Figure 2 using a sample generated by
pr (i.e.we measure theD1 only for strings with a strictly positive value). The results are
presented on Figure 8. MDI and Alergia are clearly not able tobuild a good estimation
of the target distribution and we see that their best answer is to produce a unigram. On
the other hand, DEES is able to identify a structure close to the MA that was used for
defining the distribution and produces good automata after 2000 examples. This means
that DEES seems able to produce pseudo-stochastic rationallanguages which are closed
to a non rational stochastic distribution.

5 Conclusion

In this paper, we studied the class of pseudo-stochastic rational languages (PSRL) that
are stochastic languages defined by multiplicity automata which do not define stochas-
tic languages but share some properties with them. We showedthat it is possible to
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decide wether an MA defines a PSRL, but we can’t decide wether two MA define the
same PSRL. Moreover, it is possible to define a stochastic language from these MA but
this language is not rational in general. Despite of these drawbacks, we showed experi-
mentally that DEES produces MA computing pseudo-stochastic rational languages that
provide good estimates of a target stochastic language. We recall here that DEES is able
to output automata with a minimal number of parameters whichis clearly an advantage
from a machine learning standpoint, especially for dealingwith small datasets. More-
over, our experiments showed that DEES outperforms standard probabilistic grammat-
ical inference approaches. Thus, we think that the class of pseudo-stochastic rational
languages is promising for many applications in grammatical inference. Beyond the
fact to continue the study of this class, we also plan to consider methods that could
infer a class of MA strictly greater than the class of PSRL. Wealso began to work on
an adaptation of the approaches presented in this paper to trees.
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6 Annex

6.1 Proof of Lemma 1

Lemma 1. Let A be a reduced representation of a pseudo-stochastic language. Then,
ρ(A) < 1.

Proof (sketch).Let A = 〈Σ, Q, ϕ, ι, τ〉 be a reduced representation ofr and letB =
〈Σ, QB, ϕB, ιB, τB〉 be an MA that computesr and such thatρ(B) < 1. SinceA
is reduced, the vector subspaceE of R〈〈Σ〉〉 spanned by{rA,q|q ∈ QA} is equal to
[{u̇r|u ∈ Σ∗}] and is contained in the vector subspaceF spanned by{rB,q|q ∈ QB}.

The set{rA,q|q ∈ QA} is a basis ofE. Let us complete it into a basis ofF and let
PE be the corresponding projection defined fromF overE. Note that for anyx ∈ Σ
and anyr ∈ F , we havePE(ẋr) = ẋPE(r).

For any stateq ∈ QB, let us expressPE(rB,q) in this basis.

PE(rB,q) =
∑

q′∈QA

λq,q′rA,q′ .

Note that for any MAC and any stateq of C,
∑

x∈Σ

ẋrC,q =
∑

q′∈QC

ϕC(q, Σ, q′)rC,q′ .

Therefore, for any stateq of B, we have

PE(
∑

x∈Σ

ẋrB,q) = PE(
∑

q′∈QB

ϕB(q, Σ, q′)rB,q′ ) =
∑

q′∈QB

ϕB(q, Σ, q′)
∑

q′′∈QA

λq′,q′′rA,q′′

but also

PE(
∑

x∈Σ

ẋrB,q) =
∑

x∈Σ

ẋPE(rB,q) =
∑

x∈Σ

ẋ
∑

q′∈QA

λq,q′rA,q′

=
∑

q′∈QA

λq,q′

∑

q′′∈QA

ϕA(q′, Σ, q′′)rA,q′′

and therefore
∑

q′∈QB

∑

q′′∈QA

ϕB(q, Σ, q′)λq′,q′′ =
∑

q′∈QA

∑

q′′∈QA

λq,q′ϕA(q′, Σ, q′′).

Now, let MA (resp.MB, resp.Λ) be the matrix indexed byQA × QA (resp.QB ×
QB, resp.QB × QA) and defined byMA[q, q′] = ϕA(q, Σ, q′) (resp.MB[q, q′] =
ϕB(q, Σ, q′), resp.Λ[q, q′] = λq,q′ ). Note that the rank ofΛ is equal to the dimension
of E. We have

MBΛ = ΛMA.

Let µ be an eigenvalue ofMA and letX an associated eigenvector. We have

MBΛX = ΛMA = µΛX

and since the rank ofΛ is maximal,µ is also an eigenvalue ofMB. Therefore,ρ(B) < 1
implies thatρ(A) < 1. ut
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6.2 Proof of Proposition 3

Proposition 3. It is undecidable whether two rational series define the samestochastic
language.

Proof. Let A = 〈Σ, Q, ι, ϕ, τ〉 be an MA which satisfies|rA(u)| ≤ λ|u| for some
λ < 1/(2|Σ|). Let Σ = {x|x ∈ Σ} be a disjoint copy ofΣ and letc be a new letter:
c 6∈ Σ ∪Σ. Let u → u be the morphism inductively defined fromΣ∗ into Σ

∗
by ε = ε

andux = u · x.
Let B = 〈ΣB, Q, ι, ϕB , τ〉 defined byΣB = Σ ∪ Σ ∪ {c}, ϕB(q, c, q′) = 1 if

q = q′ and 0 otherwise,ϕB(q, x, q′) = ϕB(q, x, q′) = ϕ(q, x, q′) if x ∈ Σ.
Let f be the rational series defined byf(w) = rA(uv) if w = ucv for someu, v ∈

Σ∗ and 0 otherwise.
Let ρ be such that2λ < ρ < 1/|Σ|, let r be the rational series defined onΣB by

r(w) = ρ|w| if w ∈ Σ
∗

and 0 otherwise. Letg = f + r. Check that

∑

w∈Σ
∗

ρ|w| =
∑

n≥0

(|Σ|ρ)n =
1

1 − |Σ|ρ
and

∑

u,v∈Σ∗

|f(ucv)| =
∑

u,v∈Σ∗

|rA(uv)| ≤
∑

u,v∈Σ∗

λ|uv| =





∑

n≥0

(|Σ|λ)n





2

=

(

1

1 − |Σ|λ

)2

.

Therefore, the sum
∑

w∈Σ∗
B

g(w) is absolutely convergent. Check also that

X

w∈Σ∗
B

g(w) ≥
X

w∈Σ∗

ρ|w|−
X

u,v∈Σ∗

|f(ucv)| ≥ 1

1− |Σ|ρ−
„

1

1− |Σ|λ

«2

=
|Σ|(|Σλ2 − 2λ + ρ)

(1− |Σ|ρ)(1− |Σ|λ)2
> 0.

Let µ = (
∑

w∈Σ∗
B

g(w))−1 andh = µg.

For anyu ∈ Σ∗, h(u) = µρ|u|, h(ucΣ∗
B) = h(ucΣ∗) = µrA(uΣ∗) andh(uΣ∗

B) =

h(uΣ
∗
) + h(ucΣ∗) = µ( ρ|u|

1−|Σ|ρ|u| + rA(uΣ∗)).
Check also that for anyu ∈ Σ∗,

ρ|u|

1 − |Σ|ρ|u|
+rA(uΣ∗) ≥

ρ|u|

1 − |Σ|ρ|u|
−

∑

v∈Σ∗

|rA(uv| ≥
ρ|u|

1 − |Σ|ρ|u|
−

λ|u|

1 − |Σ|λ|u|
> 0.

Therefore,h(u) > 0 andh(uxΣ∗
B) > 0 for everyu ∈ Σ∗ and any letterx ∈ Σ. On

the other hand,h(ucΣ∗
B) > 0 iff rA(uΣ∗) ≤ 0. That is,ph = pr iff rA(uΣ∗) ≤ 0

for everyu ∈ Σ∗. An algorithm capable to decide whetherph = pr could be used to
decide whetherrA(uΣ∗) ≤ 0 for everyu ∈ Σ∗. ut

6.3 Drawing a word according topr

Modification of Algorithm 2 in order to draw a word according to the distributionpr.
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Input : an MA A = 〈Σ, Q = {q1, . . . , qn}, ϕ, ι, τ 〉 s.t.ρ(A) < 1 andrA(Σ∗) = 1

Output : a wordu drawn according toprA

for i = 1, . . . , n /* this step is polynomial inn and is done once*/do
si ← rA,qi

(Σ∗); ei ← ι(qi);

u← ε;
finished← false;
w← ε; λ← 1 /* λ is equal toprA

(wΣ∗)*/ ;
while not finished do

S ← ∅;
λ← 1 ;
v ←Pn

i=1 eiτ (qi);
if v > 0 then S ← {(ε, v)};
λ← v;
for x ∈ Σ do

v ←Pn
i,j=1 eiϕ(qi, x, qj)sj ;

if v > 0 then
S ← S ∪ {(x, v)};
λ← λ + v;

for (x, v) ∈ S do (x, v)← (x, v/λ);
x← Draw(S) /*Draw randomly an element(x, p) of S with probabilityp*/;
if x = ε then

finished← True;

else
u← ux;
for i = 1, . . . , n do ei ←

Pn
j=1 ejϕ(qj , x, qi);

Algorithm 3: Algorithm drawing a word according to the distributionpr.


